
Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 1 of 277
http://www.PeterBlum.com

Peter’s Input Security

User’s Guide

Click on any of these topics to jump to them:

 Peter’s Input Security Overview

 Your Opponents: the Hackers Of the World

 What to Defend: Inputs From The Browser

 What to Defend: Other Inputs

 Your Weapons: The Tools For Building A Good Defense

 SQL Injection Primer

 Script Injection Primer

 Tampering Primer

 Other Forms Of Attacks

 Securing A Page

 Securing a Web Service And Other Inputs

 It’s Not Secure Until…

 The Security Analysis Report

 The PageSecurityValidator

 The FieldSecurityValidator

 The TextLengthSecurityValidator

 The LogAndRespond Engine

 About The SQL Detection Engine

 About The HTML and Script Detection Engine

 Slowing Down Attacks

 Troubleshooting

 Table of Contents

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 2 of 277
http://www.PeterBlum.com

Table of Contents

PETERBLUM.COM AND SECURITY 8

What This Software Will and Will Not Do 8

License Information 9

Platform Support 9

TECHNICAL SUPPORT AND OTHER ASSISTANCE 10
Installation and User’s Guides 10
PeterBlum.Com MessageBoard 10
Getting Product Updates 10
Technical Support 10

PETER’S INPUT SECURITY OVERVIEW 11

Your Opponents: the Hackers Of the World 12
Some Creative Ways Hackers Get By Your Defenses 13

What to Defend: Inputs From The Browser 15

What to Defend: Other Inputs 16

Your Weapons: The Tools For Building A Good Defense 17
The Security Analysis Report 18
The PageSecurityValidator, An Overview 19
The FieldSecurityValidator, An Overview 21
The TextLengthSecurityValidator, An Overview 22
Validators from Peter’s Data Entry Suite 23
The LogAndRespond Engine, An Overview 24
Methods to Neutralize Injection, An Overview 25
Customizing How Injection is Detected, An Overview 26
Your Own Code 27

SQL INJECTION PRIMER 28

Ad-Hoc SQL Statements 29

Stored Procs that use EXEC() on the inputs 31

Blocking SQL Injection 32
Validators from Peter’s Data Entry Suite 32
PageSecurityValidator and FieldSecurityValidator 32
Don’t Show Exceptions; Log Them 32

Neutralizing SQL Injection 34
Clean Up Text When Using Ad-Hoc Statements 34
Pass Each Input as a Parameter 35
Ad-hoc Statements used by Stored Procedures 37

References 38

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 3 of 277
http://www.PeterBlum.com

SCRIPT INJECTION PRIMER 39

Blocking Script Injection 40
Validators from Peter’s Data Entry Suite 40
PageSecurityValidator and FieldSecurityValidator 40

Neutralizing Script Injection 41
Prevent all HTML tags 41
Prevent some HTML tags 41

TAMPERING PRIMER 42

Tampering with Hidden Fields 43
Blocking Hidden Field Tampering 44
Neutralizing Hidden Field Tampering 45

Tampering with Query String Parameters 46
Preventing Query String Tampering 47
Blocking Query String Tampering 48
Neutralizing Query String Tampering 50

Tampering with Cookies 51
Preventing Cookie Tampering 52
Blocking Cookie Tampering 53
Neutralizing Cookie Tampering 54

Tampering with Visible Fields 55
Invisible TextBoxes 55
Changing Values on Non-TextBox Form Inputs 56

OTHER FORMS OF ATTACKS 57

Brute Force Login Attack 57

Protecting the ViewState 58

References 59

SECURING A PAGE 60

Goals 60

Follow these Steps on Each Page 61

THE SECURITY ANALYSIS REPORT 66

Creating a Report 67

Viewing a Report 68

Understanding the Report 69
Header 70
Visible Controls 71
Hidden Fields 76
Unknown Fields 78

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 4 of 277
http://www.PeterBlum.com

Query Strings 79
Cookies 81
Programmer’s Comments 83
Notes 84

THE PAGESECURITYVALIDATOR 85

PageSecurityValidator Properties 86
Visible And Hidden Field Properties 87
Query String Parameter Properties 89
Cookie Properties 90
Security Analysis Report Properties 91
Showing The Error Properties 92
Properties From the Base Class That Should Not Be Used 93

HiddenFieldRule Objects 94
Properties of the HiddenFieldRule Object 95
Adding a HiddenFieldRule Object as ASP.NET Text 101
Adding a HiddenFieldRule Object Programmatically 102

ParameterRule Objects 106
Properties of the ParameterRule Object 107
Adding a ParameterRule Object as ASP.NET Text 111
Adding a ParameterRule Object Programmatically 112

CookieRule Objects 115
Properties of the CookieRule Object 116
Adding a CookieRule Object as ASP.NET Text 120
Adding a CookieRule Object Programmatically 121

PageSecurityValidator Methods 124
Methods to Cleanup Input and Notify The Report 125
Methods to Set the HiddenFieldRule.OriginalValue Property 153
Methods to Exclude A Control From Validation 155

THE FIELDSECURITYVALIDATOR 156

FieldSecurityValidator Properties 157
Control To Evaluate Properties 157
Detect Injection Properties 158
Communication Mode Properties 160
Showing The Error Properties 162
Changing When the Validator is Evaluated Properties 163
Properties From the Base Class That Should Not Be Used 164

Methods of FieldSecurityValidator 165
LogDataInfo Method 165

THE TEXTLENGTHSECURITYVALIDATOR 166

TextLengthSecurityValidator Properties 167
Control To Evaluate Properties 167
Detecting The Length Properties 168
Showing The Error Properties 169
Changing When the Validator is Evaluated Properties 170
Other Properties 171

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 5 of 277
http://www.PeterBlum.com

Getting the Cleaned Up Value Property and Method 172

THE LOGANDRESPOND ENGINE 173

Track exceptions on the page in the Page.Error event 174
TrackException Method That Does Not Get Passed Exception Object 174

Track exceptions in your own Try.. Catch code 176
TrackException Method That Gets Passed An Exception Object 176

Track errors of your own invention 178
TrackError Methods 178
TrackErrorArgs Class 181

Track attacks from your own detection code 183
TrackAttack Methods 183
AttackDetails Class 186
TrackAttackArgs Class 189

LogAndRespond Properties 191
Access the Global LogAndRespond Instance 191
Configure LogAndRespond 191

LogAndRespond Methods 192
Methods To Set up LogAndRespond 193
Methods To Track Attacks, Events and Exceptions 199

ABOUT THE SQL DETECTION ENGINE 203

How It Detects SQL within Text 204

What Each SQL Detection Level Uses To Detect Attacks 206
Level: Low 206
Level: MediumLow 207
Level: Medium 208
Level: MediumHigh 209
Level: High 210

Statement Detection Algorithm 211
Elements Used As Evidence 212
Example 212
Statement Detection Algorithm Settings 214
Editing the LevelRules 216
Editing the Weighted Keywords 217

Text That is Never Permitted 220
Using the Peter’s Input Security Configuration Files 221
Modifying IllegalSQLElements Programmatically 222

Initial SQL Keywords 223
Using the Peter’s Input Security Configuration Files 224
Modifying InitialSQLKeywords Programmatically 225

Names In Your Database 226
Using the Peter’s Input Security Configuration Files 227
Modifying DatabaseElementNames Programmatically 228

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 6 of 277
http://www.PeterBlum.com

SQL Functions 229
Using the Peter’s Input Security Configuration Files 230
Modifying SQLFunctions Programmatically 231

Creating Your Own Rules 232
Using the Peter’s Input Security Configuration Files 233
Adding Rules Programmatically 234

FindSQLInjection and Other Methods 236
UseConfigFiles Method 236
FindSQLInjection Method 237
AttackResults Class 239

ABOUT THE HTML AND SCRIPT DETECTION ENGINE 240

HTML Tags That Are Never Permitted 241
Using the Peter’s Input Security Configuration Files 242
Modifying IllegalTags Programmatically 243

HTML Attributes That Are Never Permitted 244
Using the Peter’s Input Security Configuration Files 245
Modifying IllegalAttributes Programmatically 246

Javascript Code and Attribute Contents That Are Never Permitted 247
Using the Peter’s Input Security Configuration Files 248
Modifying IllegalAttributeContents Programmatically 249

Creating Your Own Rules 250
Using the Peter’s Input Security Configuration Files 251
Adding Rules Programmatically 252

FindScriptInjection Method 253

SECURING A WEB SERVICE AND OTHER INPUTS 255

Methods for Cleaning Input On PeterBlum.DES.Security.Globals 255
CleanupInput Method (with length check) 256
CleanupInput Method (without length check) 258
CleanupInputKeepingTags Method 259
CleanupInputKeepingTags2 Method 261
HTMLDecodePreserveTags Method 263

SLOWING DOWN ATTACKS 264

Features of the Slow Down Manager 265

Setting Up The Slow Down Manager 266
Handling Proxy Servers 268
Quick Blocking 269

SlowDownMgr Properties 270

SlowDownMgr Methods 271

IT’S NOT SECURE UNTIL… 276

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 7 of 277
http://www.PeterBlum.com

TROUBLESHOOTING 277

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 8 of 277
http://www.PeterBlum.com

PeterBlum.com and Security
PeterBlum.com is not a computer security company and does not claim expertise in aspects of security outside of what
Peter’s Input Security addresses. Peter Blum is a programmer who faces the same challenges as other ASP.NET
programmers. As Microsoft has promoted the issues behind SQL and Script injection attacks, they placed much of the burden
on the programmers to solve “input validation”. Peter has been able to focus on the problem for an extended period of time to
come up with a viable commercial solution for ASP.NET websites. Peter’s background includes over 20 years of commercial
desktop application development, with extensive OOP, ASP.NET, regex, and database skills. This has been combined with
the published knowledge of others in books and articles, many of which you see referenced in this User’s Guide, to design
Peter’s Input Security.

You should expect PeterBlum.com to provide technical support on specific product features and usage.

You should not expect PeterBlum.com to provide technical support on general input security issues. PeterBlum.com
recommends you seek qualified expertise to answer your general input security issues.

What This Software Will and Will Not Do
Peter’s Input Security is designed to greatly reduce the ability for a hacker to attack your website through SQL injection,
script injection (a.k.a. “Cross Site Scripting”) and tampering with inputs from the following sources: HTML form data entry
fields, query string parameters and cookies. Even at its highest settings, it cannot guarantee 100% protection. Hackers
continue to find new ways to attack websites.

This software can only provide its best protection when you carefully follow the directions supplied.

 You are responsible for neutralizing data that was not blocked by this software. The software provides some tools based
on a common knowledge of how to defend against hackers. The User’s Guide provides additional suggestions.

 Peter’s Input Security’s validators only look at the data from HTML form data entry fields, hidden fields, query string
parameters and cookies. Any other form of input is your responsibility to identify and protect. See the section “Securing
a Web Service And Other Inputs”.

 Peter’s Input Security can detect and block most SQL and script injection attacks. However, the settings are highly
configurable, allowing you to turn off some or all of the protection. You must write code to neutralize the attacks that get
past Peter’s Input Security’s detection code.

 Peter’s Input Security can detect and block some forms of input tampering. You are responsible for detecting, blocking
and neutralizing any other case.

 There are many more ways hackers can attack your website. Consult an expert to learn more and determine the best
course of action.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 9 of 277
http://www.PeterBlum.com

License Information
This document includes information for the Peter’s Input Security module in Peter’s Data Entry Suite. If you licensed the
complete Suite or the “Peter’s Input Security” module, you have all features found in this User’s Guide, unless otherwise
noted.

Platform Support
This product was written for Microsoft ASP.NET. It supports all versions from 1.0 up. It includes assemblies specific to
ASP.NET 1.x and ASP.NET 2. It is compatible with all browsers, scaling down automatically when the browser has a
limitation. In some cases, that means the control turns off its client-side functionality or turns itself off entirely.

This product is designed to scale properly even when the Page’s ClientTarget property causes the HttpBrowserCapabilities
(Request.Browser) to falsely state the browser. In other words, you can’t fool these controls with an upLevel clientTarget.
This is absolutely necessary because feeding the wrong browser will generate incorrect client side scripts giving the user’s
scripting errors. It was also considered a requirement to hide features that didn’t work on the browser to give the user the best
interface. For more, see “Browser Support” in the Shared Features document.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 10 of 277
http://www.PeterBlum.com

Technical Support and Other Assistance
PeterBlum.com offers free technical support. This is just one of the ways to solve problems. This section provides all of your
options and explains how technical support is set up.

Installation and User’s Guides
These guides are large because they are loaded with content. In many cases, the answers are in them. Both guides include
Troubleshooting sections. This information will often save you time.

PeterBlum.Com MessageBoard
Use the message board at http://groups.yahoo.com/groups/peterblum to discuss issues and ideas with other users.

Getting Product Updates
As minor versions are released (4.0.1 to 4.0.2 is a minor version release), you can get them for free. Go to
http://www.peterblum.com/DES/Home.aspx. It will identify the current version at the top of the page. You can read about all
changes in the release by clicking “Release History”. Click “Get This Update” to get the update. You will need the serial
number and email address used to register for the license.

As upgrades are offered (v4.0 to v4.1), PeterBlum.com will determine if there is an upgrade fee at the time. You will be
notified of upgrades and how to retrieve them through email.

PeterBlum.com often adds new functionality into minor version releases.

Technical Support
You can contact Technical Support at this email address: Support@PeterBlum.com. I (Peter Blum) make every effort to
respond quickly with useful information and in a pleasant manner. As the only person at PeterBlum.com, it is easy to imagine
that customer support questions will take up all of my time and prevent me from delivering to you updates and cool new
features. As a result, I request the following of you:

 Please review the User’s or Installation Guide, including their Troubleshooting sections, first.

 Please try to include as much information about your web form or the problem as possible. I need to fully
understand what you are seeing and how you have set things up.

 If you have written code that interacts with my controls or classes, please be sure you have run it through a debugger
to determine that it is working in your code or the exact point of failure and error it reports.

 I am not a security expert. Tech support cannot provide support on general security issues. See “PeterBlum.com
and Security”.

 I cannot offer general ASP.NET mentoring. If your problem is due to your lack of knowledge in ASP.NET, I will
give you some initial help and then ask you to find assistance from the many tools available to the .Net community.
They include:

o Books

o http://www.GotDotNet.com - for training and many samples on using ASP.NET

o www.asp.net forums and tutorials

o Microsoft’s usenet newsgroups such as microsoft.public.dotnet.framework.aspnet. See
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet

o Google searches. (I virtually live in Google as I try to figure things out with ASP.NET.)
http://www.Google.com. Don’t forget to search the “Groups” section of Google!

o http://aspnet.4guysfromrolla.com/, http://www.dotnetjunkies.com, http://www.aspalliance.com/

As customers identify issues and shortcomings with the software and its documentation, I will consider updating these areas.

http://groups.yahoo.com/groups/peterblum�
http://www.peterblum.com/DES/Home.aspx�
mailto:Support@PeterBlum.com�
http://www.gotdotnet.com/�
http://www.asp.net/�
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=microsoft.public.dotnet�
http://www.google.com/�
http://aspnet.4guysfromrolla.com/�
http://www.dotnetjunkies.com/�
http://www.aspalliance.com/�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 11 of 277
http://www.PeterBlum.com

Peter’s Input Security Overview
Hackers have learned that the easiest way to access your database and affect your website users is through the front door:
wherever data is input from the web page. These inputs include visible fields, hidden fields, query string parameters, and
cookies. Input Security describes your defenses against these attacks on these inputs.

Peter’s Input Security can provide a formidable defense against these violations of your website.

Here are the seven main elements of Input Security:

 Auditing – Analyze each page for all inputs and the security protections assigned to them through the Security Analysis
Report.

 Detection – Look at the text supplied by the browser to confirm that it is valid. Ordinary validators, whether Microsoft’s
or those within DES, can handle this task for some of the cases. Peter’s Input Security handles the remaining cases.

 Logging – When invalid text is detected and it is severe enough, you should be notified. You can log the “attack” in the
Event Log, a text file, database, or email. You use this information to be aware of what’s happening, prevent further
attacks, and cleaning out any illegal data. A useful log will identify the IP address and user login as well as give specific
reasons why the input was invalid. Peter’s Input Security has this capability built in.

 Blocking – When invalid text is detected, prevent it from being saved or used. Ordinary validators do this by showing an
error message and telling your to skip its save phase through the Page.IsValid property. The ValidateRequest
attribute of the <%@Page %> tag also provides blocking by throwing an exception. Peter’s Input Security lets you show
an error message, throw an exception, or redirect to another page.

 Neutralization – If the input is not blocked, expect it to go into your data saving or usage code. At this point, the input
still may contain illegal values. Either you defined validators to allow special cases through or the hacker has found a
way past the detection code. You have to modify the input to neutralize any attacks.

 Limiting Access – There are many ways to make it very difficult for the hacker to proceed with their hack. Peter’s Input
Security helps you hide key information by logging errors. Peter’s Input Security slow downs and frustrates the attacker
by redirecting to another page when the user has conducted several attacks on the same page.

 Knowledge – The better you know how attackers work, the better your security design can be. Peter’s Input Security
provides this knowledge through this User’s Guide and through the information captured as attacks are logged.

There are several ways hacker’s can attack your website through your inputs. Peter’s Input Security provides detection for the
following types:

 SQL Injection – Using legal SQL statements to run within your SQL-based database. Once a hacker discovers a hole in
your website that permits SQL injection attacks, they have nearly free control, extracting, modifying, adding and deleting
information. For more, see “SQL Injection Primer”.

 Script Injection (also known as “Cross Site Scripting” or XSS) – Putting HTML tags and javascript code into data that is
later shown to other site users. The HTML and scripts become part of the code supplied to the browser. The hacker’s
code can do harmful things like redirecting users another site or extracted data from cookies. For more, see “Script
Injection Primer”.

 Tampering – You probably are already checking that the user’s input in text boxes matches your requirements, such as is
the correct format and length. Hackers know that the other inputs – hidden fields, query string parameters, cookies and
even the value of non-textbox fields – probably don’t have any defenses. They tamper with the data, supplying illegal
values that you fail to block. For more, see “Tampering Primer”.

 Repeated attacks – Hackers will attack the same page multple times. This is common for injection attacks and brute force
attempts to discover a login. The Slow Down Manager will monitor these attackers and block access to the pages being
hacked. See “Slowing Down Attacks”.

This User’s Guide also includes information on other types of attacks in “Other Forms Of Attacks”.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 12 of 277
http://www.PeterBlum.com

Your Opponents: the Hackers Of the World
Hackers are often very smart, creative people. Many have the time, determination and resources to invade your website. Even
an inexperience hacker is capable of doing damage due to the resources available to them:

 Extensive literature on hacking. These are written for you, the website programmer, to know what to expect from
hackers. Yet they are guides for the hackers too. This User’s Guide includes links to some of them.

 Software written for hacking. The hacker community has published numerous programs that implement effective
hacking techniques.

 Numerous servers to launch an attack. Using the software written for hacking from multiple servers greatly increases the
risk of attack. The hacker may have several servers of their own, but more likely, they have hacked into other servers and
use them as part of their attack on your website.

 The hacker community. These folks talk to each other, exchanging ideas and assistance. You can assume that they will
even exchange all knowledge acquired from hacking your site and work together to get further into your database.

You are up against a formidable opponent!

Here’s another scary thought: no website is 100% safe from hacking. There are just too many possible ways to hack, with
new ones created all of the time. As your website gets more complicated, there is more “surface area” to defend, increasing
the possibilities of “holes” in your defenses. For a good overview of these techniques and your mission to defend against
them, consider the book “Hacking the Code” by Mark M. Burnett and James C. Foster, from Syngress Publishing, Inc (ISBN:
1-932266-65-8).

Don’t let the fact that its impossible to stop all hacking limit your efforts because if you make it very difficult to hack, most
hackers will abandon their efforts. As a programmer, your job is to make your website very difficult to hack. DES and
Peter’s Input Security provide you the tools to do this on the inputs sent to your web server from a browser.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 13 of 277
http://www.PeterBlum.com

Some Creative Ways Hackers Get By Your Defenses
As you learn more about SQL and Script injection attacks, some common hacking patterns will be presented. You might
think that if you look for these patterns, you can detect these attacks. Remember that you are up against a formidable
opponent who may enjoy finding new ways to get around your defenses. They say that the best defense is to know your
opponent: learn to think like a hacker.

Here are some examples of common patterns and ways hackers get around your defenses.

SQL Injection Case 1

This is a common pattern used in a SQL injection attack:

' OR 1=1--

Here are a variety of ways to do the same thing:

'OR 1 = 1 --

' OR true --

' OR 2>1 --

SQL Injection Case 2

When looking for a SQL injection attack, you often look for this pattern:

SELECT *

Here are a variety of ways to do the same thing:

SELECT *

SELECT 1,2,3,4,5,6,7,8,9,10

SELECT/**/*

That last case replaces the space with a SQL comment: /* */

What makes SQL injection patterns hard to detect is that the user can write any syntax supported by your database’s SQL
parser and the language itself.

Script Injection Case 1

Script injection attacks often use a <script> tag followed by the necessary javascript. But you cannot just look for a <script>
tag or the initial characters of the tag: <script. Why? Because Internet Explorer allows a null character (#00) to appear in
the tag and simply ignores it. So <[null character]script can break your pattern check for <script. In fact, in
early ASP.NET 1.1 releases, this was a bug in the ValidateRequest code. See
http://support.microsoft.com/default.aspx?scid=kb;EN-US;821349.

Script Injection Case 2

Hackers don’t need to use a <script> tag at all. Most HTML elements support scripts on event handler attributes like
onload=, onclick=, and onmouseover=. For example, this tag will be sufficient to switch to the Google home
page as your page is loading:

<img src="http://www.google.com/images/logo.gif"
onload="document.location.href='http://www.google.com';" />

Affecting A Page To Which The User Doesn’t Have Access

Some pages that you build only expect to be launched by server side code using the Response.Redirect() or
Server.Transfer() methods. As a result, you may not check inputs sent from the originating page. Hacks will look for
this.

With Response.Redirect(), they can quickly see the destination page as their browser will update with a new URL,
showing all query string parameters. Now they can simply modify the query string to launch their attack.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;821349�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpResponseClassRedirectTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassTransferTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 14 of 277
http://www.PeterBlum.com

With Server.Transfer(), they hope that you do not validate inputs before calling Server.Transfer(). If the
destination page fails to validate them, the hacker has found a hole in your defenses.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 15 of 277
http://www.PeterBlum.com

What to Defend: Inputs From The Browser
Your web server is designed to receive HTTP requests. These are packages of textual data sent from your browser or some
software pretending to be a browser. These packages contain all of the inputs that DES and Peter’s Input Security evaluate.
You can easily see them using the Trace=true attribute within the <%@Page %> tag. Run the page to the browser and
look at the sections “Cookies Collection”, “Querystring Collection”, and “Forms Collection”. These are the sources of input.

 Cookies Collection – This is a list of cookies sent from the browser to the server as defined in the Request.Cookies
collection. While you normally think that only your website makes and modifies them, hackers know enough to make
and edit your cookies with their own data.

Defense: Peter’s Input Security provides the tools to detect SQL injection, script injection and Tampering.

 Querystring Collection – This is a list of query string parameters from the URL as defined in the Request.QueryString
collection. You may be aware of how easy it is for a user to modify them. You probably have done this yourself at times.
Most of the time, its innocent behavior. Hackers use them too, especially because most websites fail to put defenses on
them.

Defense: Peter’s Input Security provides the tools to detect SQL injection, script injection and Tampering.

 Forms Collection – This is a list of values from all <input>, <select> and <textarea> tags on your page on post
back. It is defined in the Request.Form collection. It provides the most familiar form of input: the data you extract from
your Web Controls. You will also find values of hidden fields here (<input type='hidden' />)

For fields that include the runat=server attribute, you will usually ignore the Request.Form collection and interact
with a property on the WebControl or HtmlControl to access the data. For example, TextBox.Text,
DropDownList.SelectedIndex and HtmlInputText.Value.

There are several entries in the Request.Form collection that come from less than obvious sources.

o Hidden fields are often defined using Page.RegisterHiddenField(). You must use Request.Form
to access their values.

o <input>, <select> and <textarea> tags written onto the page without a runat=server.

o <input>, <select> and <textarea> tags written into the page through a LiteralControl or Label

o <input>, <select> and <textarea> tags written into the page through a custom control that outputs its
HTML through the rendering methodology.

Defense: Peter’s Input Security provides the tools to detect SQL injection and script injection on all form-based values.
It also provides the tools to detect tampering on hidden fields. DES provides the validators to detect illegal values on
visible fields.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassquerystringtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcompositionvsrendering.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 16 of 277
http://www.PeterBlum.com

What to Defend: Other Inputs
If your site includes web service support, assume hackers will learn about and attempt to exploit it. Peter’s Input Security
provides tools to detect SQL and script injection on textual inputs. You are responsible for creating a defense that uses them
and your own code to detect tampering.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 17 of 277
http://www.PeterBlum.com

Your Weapons: The Tools For Building A Good Defense
When it comes to input security, this is your goal: block what you can and neutralize everything else.

It all starts with full knowledge of your inputs. Once identified, you can use Validator controls to build your defenses on the
inputs.

You have some work ahead of you. Input Security takes far more than just dropping a web control on the page. Security
requires that you define the valid and invalid behaviors on each input. If you did not offer this knowledge, security would
either be too aggressive, keeping reasonable input out, or too lacking, allowing unreasonable input in. Peter’s Input Security
makes this process easier by providing a solid analysis of each page with its Security Analysis Report and useful instructions
here in the User’s Guide.

Click on any of these topics to jump to them:

 The Security Analysis Report

 The PageSecurityValidator, An Overview

 The FieldSecurityValidator, An Overview

 The TextLengthSecurityValidator, An Overview

 Validators from Peter’s Data Entry Suite

 The LogAndRespond Engine, An Overview

 Methods to Neutralize Injection, An Overview

 Customizing How Injection is Detected, An Overview

 Your Own Code

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 18 of 277
http://www.PeterBlum.com

The Security Analysis Report
Peter’s Input Security provides the Security Analysis Report to determine all of the inputs on your page and understand how
well they are protected. This report is a significant tool, used both by programmers and others who audit your efforts to build
your security.

This report can run automatically on each page, for each time the page is generated. The report is output as an HTML file in a
folder that you specify. As each report is uniquely named, you can look at security from various incarnations of the page.

This report is thorough:

 It identifies all sources of input on the page:

o Every web control that may generate <input>, <select> and <textarea> tags.

o Every element in Request.Form that isn’t covered by a web control

o Every query string parameter passed into the page

o Every query string parameter for which you’ve defined validation rules

o Every cookie in Request.Cookies

o Every cookie for which you’ve defined validation rules

 It lists all validators associated with each source of input.

 It provides ratings for how well protected the input is from SQL and Script attacks. Each rating is supported by
comments that help you know exactly how the rating was achieved.

 It makes recommendations to adjust the field.

 It shows how the programmer has neutralized data that did not get blocked. The programmer can add their own
comments with strategy, implementation, their initials and date the work was done.

You will use this report throughout the process of securing your pages. First it will let you know the inputs on the page and
their current defenses. Later, it will help you plug the holes in your security. Finally, it will let you test your page in its
various incarnations to be sure that you have secured it.

See “The Security Analysis Report” for details..

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 19 of 277
http://www.PeterBlum.com

The PageSecurityValidator, An Overview
This DES-style Validator web control handles most of your defenses. Just by adding it to the page, the default settings detect
SQL and script injection attacks on visible and hidden fields. In addition, it installs the Security Analysis Report on the page
so you can immediately run the page to get a report.

The PageSecurityValidator has numerous settings to handle these situations:

 Detect SQL and script injection in all elements in Request.Form collection. This includes visible and hidden fields;
even those that are not web controls.

It demands the highest level of detection for SQL injection. This may be too high for some of your textboxes in which
case you will use the FieldSecurityValidator. Most other fields will work well at the highest level.

There are properties to customize which HTML tags are permitted when detecting script injection. This means you can
allow some HTML tags. The ValidateRequest property of the Page object will not permit any HTML tags. So set
ValidateRequest=false in the <%@Page %> declaration and let the PageSecurityValidator handle detection, logging
and blocking of script injection.

ALERT: When using ASP.NET 4 or higher, you must also add this to the <system.web> section of your web.config
file, to enable the ValidateRequest property:

<httpRuntime requestValidationMode="2.0" />

 Detect tampering of hidden fields. Use the HiddenFieldRules property to form a collection of
PeterBlum.DES.Security.HiddenFieldRule objects, one for each hidden field that you want to detect
tampering. Rules include:

o Data type – Confirm that the value represents an integer, decimal, or date. Like using a
DataTypeCheckValidator. There are two other data types: string and enumerated. Enumerated is like using a
CompareToStringsValidator, by demanding the text matches to a string in a list of strings.

o Regular expression test - When the data type is “String”, a regular expression can confirm that it fits a pattern.
Like using a RegexValidator.

o Character set test – When the data type is “String”, confirm that the string matches to a set of legal characters.
Like using a CharacterValidator.

o Minimum and Maximum – Establish a range for “Integer” and “Decimal” data types, like using the
RangeValidator. Establish text length limits for the “String” data type, like using the TextLengthValidator.

o Allow blank value – If disallowed, it is like using a RequiredTextValidator.

o Don’t let the value change – You supply the original value assigned to the hidden field. On post back, it will
confirm that the value hasn’t been changed.

 Override the SQL and script injection detection rules within each
PeterBlum.DES.Security.HiddenFieldRule. Turn them on or off. Change the SQL Detection Level in case
you need more flexibility. Change the HTML tags that are permitted.

 Detect tampering of query string parameters.

Usually validation only occurs on post back. With query string parameters, they are checked when the page is first
created too. (This occurs in the PreRender phase of page generation.)

Use the QueryStringRules property to form a collection of PeterBlum.DES.Security.QueryStringRule
objects, one for each query string parameter that you want to detect tampering. Rules include:

o Data type – Confirm that the value represents an integer, decimal, or date. Like using a
DataTypeCheckValidator. There are two other data types: string and enumerated. Enumerated is like using a
CompareToStringsValidator, by demanding the text matches to a string in a list of strings.

o Regular expression test - When the data type is “String”, a regular expression can confirm that it fits a pattern.
Like using a RegexValidator.

o Character set test – When the data type is “String”, confirm that the string matches to a set of legal characters.
Like using a CharacterValidator.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 20 of 277
http://www.PeterBlum.com

o Minimum and Maximum – Establish a range for “Integer” and “Decimal” data types, like using the
RangeValidator. Establish text length limits for the “String” data type, like using the TextLengthValidator.

o Allow blank value – If disallowed, it is like using a RequiredTextValidator.

o Require the presence of the parameter in the query string

o When this parameter is present, demand a list of other parameters also to be present or absent.

 Enable SQL and script injection detection rules within each PeterBlum.DES.Security.QueryStringRule.
Change the SQL Detection Level. Change the HTML tags that are permitted.

 Demand that the query string does not change between when the page is first generated to when it is posted back. (The
hacker may have edited the URL within <form action="">.)

 Scan the entire query string for characters common to SQL and script injection. If found, it reports an error. This is a
shortcut to defending against injection attacks without setting up individual entries in the QueryStringRules property.

 Detect tampering of cookies.

Usually validation only occurs on post back. With cookies, they are checked when the page is first created too. (This
occurs in the PreRender phase of page generation.)

Use the CookieRules property to form a collection of PeterBlum.DES.Security.CookieRule objects, one for
each cookie that you want to detect tampering. Rules include:

o Data type – Confirm that the value represents an integer, decimal, or date. Like using a
DataTypeCheckValidator. There are two other data types: string and enumerated. Enumerated is like using a
CompareToStringsValidator, by demanding the text matches to a string in a list of strings.

o Regular expression test - When the data type is “String”, a regular expression can confirm that it fits a pattern.
Like using a RegexValidator.

o Character set test – When the data type is “String”, confirm that the string matches to a set of legal characters.
Like using a CharacterValidator.

o Minimum and Maximum – Establish a range for “Integer” and “Decimal” data types, like using the
RangeValidator. Establish text length limits for the “String” data type, like using the TextLengthValidator.

o Allow blank value – If disallowed, it is like using a RequiredTextValidator.

 Enable SQL and script injection detection within each PeterBlum.DES.Security.CookieRule. Change the
SQL Detection Level. Change the HTML tags that are permitted.

 Run the Security Analysis Report.

 Clean up data as part of the neutralization process. It offers methods make strings safer for use in ad-hoc SQL statements
and when sent back to the browser.

 Record the efforts by the programmer to neutralize data. This information goes into the Security Analysis Report.

 Interact with the Slow Down Manager to slow down access to pages that are being hacked. This reduces resource usage,
frustrates the attacker, and confuses automated hacking software.

This is a DES-style validator, with the usual ability to show an error message and set PeterBlum.DES.Globals.Page.IsValid
to false when an error is detected. It also uses the LogAndRespond Engine to log any attack and potentially throw an
exception or redirect to another page.

You should only add one of these to a page. If you decide to show the validator’s error message, there should be a single
message such as “Illegal text was found in the inputs to this page.”

See “The PageSecurityValidator” for details.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 21 of 277
http://www.PeterBlum.com

The FieldSecurityValidator, An Overview
Use the FieldSecurityValidator to detect and block SQL and script injection on visible fields associated with web controls.
The PageSecurityValidator provides default rules for visible fields. Once a FieldSecurityValidator is assigned to a visible
field, the PageSecurityValidator no longer looks at that visible field.

Here are the detection rules for this validator:

 Enable or disable SQL injection. When enabled, use any of the SQL Detection Levels from Low to High. Why would
you disable SQL injection detection? Because you want everything the user has to type and are willing to carefully
neutralize the data before using it.

 Enable or disable script injection. When enabled, determine which HTML tags are permitted. If you disable it, be sure to
neutralize any dangerous text.

This is a DES-style validator, with the usual ability to show an error message and set PeterBlum.DES.Globals.Page.IsValid
to false when an error is detected. It also uses the LogAndRespond Engine to log any attack and potentially throw an
exception or redirect to another page.

It offers several “communication modes” that can disable logging or reporting errors back to the user:

 “No Response” mode allows you to log attacks but allow the validator to act like nothing is wrong: report no errors and
leave Globals.Page.IsValid = true. Why do this? Because you will neutralize the data input anyway. So let all user
entries in and later review the database for any concerns. This prevents the hacker from knowing that he’s being tracked.
All he knows is that his injection attacks aren’t working. Also, it lets you learn how legitimate users enter text so you can
tune your SQL and Script detection rules.

 “No Logging” mode lets you use the validator without logging. It responds only by showing the error formatter on the
validator. Use this when you want the validator to block incorrect input but not treat the user as a hacker. For example,
you want to prevent entry of certain HTML tags and want to tell the user when they have entered an illegal tag.

 “Minor Errors Show Message” mode lets you log only errors that are classified as severe. The rest of the errors will not
be logged and the validator will report the error itself, instead of responding by redirecting to another page or throwing
an exception.

 “Minor Errors No Response” mode lets you log all errors. It will use the LogAndRespond Engine to respond when the
errors are classified as severe. The rest of the errors will not be reported in any way.

You can put two FieldSecurityValidators on a visible field, one to handle SQL injection and the other for script injection.
They can have different error messages and communication modes.

See “The FieldSecurityValidator” for details.

Note: If you define a visible field that does not use runat=server, you can still validate it for tampering using the
PageSecurityValidator.HiddenFieldRules. Supply the Name attribute of the HTML tag to the HiddenFieldRule.Name
property.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 22 of 277
http://www.PeterBlum.com

The TextLengthSecurityValidator, An Overview
This DES-style validator is based on DES’s TextLengthValidator. It introduces new text length capabilities associated with
the neutralization process. Use it on textboxes where you want to limit the size of the text.

When cleaning up text, the process often adds characters to the text string. For SQL, one single quote is replaced with a pair.
For Scripts, Server.HtmlEncode() is often used, which replaces single characters with their HTML equivalent, such as
“<” to “<”.

Suppose you have a limit of 10 characters. DES’s TextLengthValidator can detect that “12345678901” is 1 character too
large. If you run your cleanup code on it, the length doesn’t change because there are no special characters.

Now suppose the user enters “12<4578901”. This is also 1 character too long. However, the cleanup code will change it to
“12<45678901”. It is now 4 characters too long. You definitely need to tell the user to shorten it. That’s the job of a
validator’s error message. But how do you explain what to do?

The TextLengthSecurityValidator provides a second ErrorMessage property, ErrorMessage2, where you give an
explanation. In the normal ErrorMessage property, you can use tokens to show the actual number of characters entered and
how much it exceeds the maximum: “You entered {COUNT} characters. Please shorten it by {EXCEEDS}.” When using the
cleaned up text, you have to be ambiguous because the length depends on which character the user deletes. So use something
like “Please shorten this text.” in ErrorMessage2.

The TextLengthSecurityValidator uses Peter’s Input Security’s own clean up function,
PageSecurityValidator.CleanupInput(), to know if the text length has been exceeded after cleanup. You must
indicate what to clean up, SQL and Script code, using the CleanupSQL and CleanupScript properties. If you are cleaning
up script code, you can define a list of HTML tags that you want to preserve in their original form with the
ValidHTMLTags property. For the tags that you don’t want to keep, you can encode or remove them with the
CleanupTagRule property.

Since this validator is already cleaning up the text, you can use the results from its own CleanupInput() method instead
of the TextBox.Text property in your data saving code. CleanupInput() also tells the Security Analysis Report that the
text is neutralized.

See “The TextLengthSecurityValidator” for details.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 23 of 277
http://www.PeterBlum.com

Validators from Peter’s Data Entry Suite
Peter’s Data Entry Suite (“DES”) provides several validators that are an important part of detection and blocking attacks on
visible fields. They are DataTypeCheckValidator, CharacterValidator, RegexValidator, and CompareToStringsValidator.
Each of these can block the patterns used in Script and SQL injection attacks. In some cases, the protection is strong enough
to avoid setting up SQL and Script detection functions on the FieldSecurityValidator or PageSecurityValidator that is
monitoring the field. Since those detection functions are fairly CPU intensive, you may consider turning off those functions
based on the suggestions here.

 The DataTypeCheckValidator is very effective at blocking injection attacks when the DataType is not String or Case
Insensitive String. Integers, decimals, currencies and dates simply cannot represent the patterns of injection attacks.

 The CharacterValidator limits the set of characters allowed in the text. If you do not permit single quote ('), minus (-),
semicolon (;), < or >, then this validator provides good (although not excellent) protection against SQL and script
injection.

 Regular expressions can impose a particular pattern that does not work well for SQL injection. They can also define a
character set limit to further stop SQL injection and potentially script injection. Always use the RegexValidator when
your textbox has a particular pattern. For the most protection, be sure that the expression covers every character in text
by using the ^ and $ regex symbols.

 CompareToStringValidator limits text to a specific list of strings. When the MatchTextRule is set to Exact, no SQL or
script injection attack is possible.

If you choose to turn off detection of SQL or script injection on an input, the software will not log any attacks. None of the
above validators provide logging. Yet these validators are there to assist the legitimate user who mistypes something.
Logging them may be excessive. So if you want to log SQL and Script attacks, keep detection enabled and accept the extra
CPU time consumed looking for these attacks.

See the Validation User’s Guide for details on these validators.

Note: DES’s validators require a license for either the suite or the modules Peter’s Professional Validation and Peter’s More
Validators.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 24 of 277
http://www.PeterBlum.com

The LogAndRespond Engine, An Overview
The LogAndRespond Engine is a class, PeterBlum.DES.Security.LogAndRespond, used to log attacks, errors and
exceptions, and respond to them.

It offers these ways to log:

 The Windows Event Log

 Write to a text file

 Send an email

Each of these requires some setup within your Application_Start() method. For the Event Log, it needs to know the
log “source”; for text files, it needs a folder where it can write files; for emails, it needs From, To, Subject, Body and the
System.Web.Mail.SmtpMail class (ASP.NET 1.x) or System.Net.Mail.SmtpClient class (ASP.NET 2.0) to
be set up with an accessible SMTP Server.

It offers these ways to respond:

 Redirect to another page

 Throw an exception with a message that you supply

The PageSecurityValidator and FieldSecurityValidators both automatically call the LogAndRespond class whenever they
detect an attack. If you set up a response, those validators will block the attack by showing a different page. Otherwise, they
will show their ErrorMessage on the current page.

You can also use the LogAndRespond Engine. These methods are exposed through
PeterBlum.DES.Security.LogAndRespond.Current:

 TrackException() – Capture exceptions and log them. You can call this from the try… catch statement code,
from the Page.Error event handler or the Application_Error() handler in the Global.asax file.

 TrackError() – Record any kind of errors that you like. Provide a description and optional error code.

 TrackAttack() – Used by PageSecurityValidator and FieldSecurityValidators to log an attack. You can use it too,
when you write custom attack detection code.

See “The LogAndRespond Engine” for details.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 25 of 277
http://www.PeterBlum.com

Methods to Neutralize Injection, An Overview
One of the most time consuming tasks in Input Security is neutralizing an attack. This is because you will be writing code to
do it. Peter’s Input Security provides you with some methods to simplify this. The methods can cleanup text and record your
efforts to neutralize attacks right into the Security Analysis Report. As a result, the report will give a clearer picture of how
secure the page is.

The PageSecurityValidator offers many of these methods. They include:

 ThisControlIsSafe() – Use this method when you want to tell the PageSecurityValidator not to validate a
specific control, such as a button, that is posting a value in Request.Form. It avoids errors where no check was needed
and avoids running the CPU intensive FindSQLInjection/FindScriptInjection methods. It also adds information to the
Security Analysis Report to document that it has been used.

 CleanupInput() – Modifies the text to limit SQL injection when you use ad-hoc SQL statements and stop script
injection. Because script injection is cleaned up using Server.HtmlEncode(), it is fully neutralized. So this method
also adds a comment to the Security Analysis Report that indicates script injection has been neutralized.

 CleanupInputEncodeInvalidTags() – Cleans up input to prevent script injection attacks. It does not handle
SQL injection. You supply a list of tags names that you want to preserve without HtmlEncoding. The cleanup keeps any
tags from that list intact, encodes all other tags, and encodes the rest of the text. If a valid tag has an illegal attribute, the
entire tag is encoded. This further protects you against attacks through your valid tags.

When you load the encoded text and insert it into a web page, you will need to HtmlDecode it. While you can use
Server.HtmlDecode(), consider using the PageSecurityValidator.HtmlDecodePreservingTags()
method which handles some special cases formed by keeping some tags intact.

 CleanupInputRemoveInvalidTags() – Cleans up input to prevent script injection attacks. It does not handle
SQL injection. You supply a list of tags names that you want to preserve without HtmlEncoding. The cleanup keeps any
tags from that list intact, deletes all other tags, and encodes the rest of the text. If a valid tag has an illegal attribute, the
entire tag is removed. This further protects you against attacks through your valid tags.

 DescribeValidator() – Peter’s Input Security does not know how your own custom validators or regular
expressions in RegexValidators may protect the input against attacks. Call this to tell the Security Analysis Report about
your custom validators, regular expressions and other techniques to validate data.

 SQLNeutralized() – When you have written the code to fully neutralize SQL injection, call this method to identify
the element on the page that is neutralized. The Security Analysis Report will reflect this fact.

 ScriptNeutralized() – When you have written the code to fully neutralize script injection, call this method to
identify the element on the page that is neutralized. The Security Analysis Report will reflect this fact.

 AddCommentToElement() – Add a comment to the Security Analysis Report for a specific element on the page. It
creates a “Programmer’s Comments” section right with that element. You can use it for what ever you like:

o Describe how you neutralized the problem. “Converted to stored procedure SP_SaveRecord”

o Describe what remains unresolved. “Waiting for a CustomValidator that supports people’s names”

o Provide your identity and the date. “Work done by Peter Blum on 5/31/04”

 AddCommentToPage() – Add a comment to the Security Analysis Report that is for the entire page. It creates a
Programmer’s Comments” section at the end of the report. You can use it for what ever you like.

See “PageSecurityValidator Methods” for details.

The TextLengthSecurityValidator can also provide cleaned up input through its CleanupInput() method.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 26 of 277
http://www.PeterBlum.com

Customizing How Injection is Detected, An Overview
Peter’s Input Security provides powerful engines for detecting SQL and script injection: the SQL Detection Engine and the
HTML and Script Detection Engine. Both have a number of rules to analyze text. You can customize what those rules look
for using the Peter’s Input Security configuration files, XML files located in the DES\Security Config Files folder.

These engines will find much more than you might expect. But it comes at the expense of being CPU intensive. Its
recommended that you review the Peter’s Input Security configuration files to tune the performance.

For the SQL Detection Engine, see “About The SQL Detection Engine” for details.

For HTML and Script Detection Engine, see “About The HTML and Script Detection Engine” for details.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 27 of 277
http://www.PeterBlum.com

Your Own Code
Peter’s Input Security cannot handle all cases that you run into. You may have some specialized data format that needs a
unique way to detect problems and block attacks. You are also responsible for neutralizing SQL injection beyond the basics
of Peter’s Input Security’s PageSecurityValidator.CleanupInput() and
TextLengthSecurityValidator.CleanupInput()can provide.

Consider these ideas:

 You must confirm that every input that does not get blocked must be neutralized unless you have a very good reason not
to. Be sure that you use Peter’s Input Security’s text cleanup code or your own. See “Securing a Web Service And Other
Inputs”.

 The best way to neutralize SQL injection is to pass each input value as a parameter into a stored procedure. ADO.NET
parameters do some cleanup of their own and generally prevent the input from being executed as a SQL command. See
“Neutralizing SQL Injection”.

 If you have a new type of data, build a validator for it. It can be either a CustomValidator or its own class, as described in
the DES Developer’s Kit (http://www.peterblum.com/vam/developerskit.aspx.)

 Review and carefully test your regular expressions used in the RegexValidator. Regular expressions are often complex
and require debugging to prevent holes that will be exploited by the hacker.

http://www.peterblum.com/vam/developerskit.aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 28 of 277
http://www.PeterBlum.com

SQL Injection Primer
SQL injection is a hacking technique where the user enters valid SQL statements into the inputs of your website and manages
to get the SQL server to execute them. It may seem like quite a feat to do that. Here are two common – and easy – ways that
they accomplish this.

Note: To best understand this topic, it helps to have a background in the Structured Query Language and how it applies to
your particular database. You should also have some background in ADO.NET if you want to neutralize these attacks.

Click on any of these topics to jump to them:

 Ad-Hoc SQL Statements

 Helpful Hints

 Stored Procs that use EXEC() on the inputs

 Blocking SQL Injection

 Validators from Peter’s Data Entry Suite

 PageSecurityValidator and FieldSecurityValidator

 Don’t Show Exceptions; Log Them

 Neutralizing SQL Injection

 Clean Up Text When Using Ad-Hoc Statements

 Pass Each Input as a Parameter

 Ad-hoc Statements used by Stored Procedures

 References

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 29 of 277
http://www.PeterBlum.com

Ad-Hoc SQL Statements
When you create a string containing a SQL statement, it can use the inputs from the page like this:

Dim mySelectSQL As String = _
 "SELECT * FROM Logins WHERE UserName='" + UserNameTextBox.Text +_
 "' AND Password='" + PasswordTextBox.Text + "'"

The programmer wants valid text like UserNameTextBox = “hjohnson” and PasswordTextBox=“mykittycat”. That would
result in this value for vSelectSQL:

 SELECT * FROM Logins WHERE UserName='hjohnson' AND Password='mykittycat'

Assuming that there is only one record for each unique user name, the database will return either one or zero rows. You
would probably write code to check that one record was returned before accepting the login. For example:

Dim myCommand As SqlCommand = New SqlCommand(mySelectSQL, myConnection)
myConnection.Open()
Dim myReader As SqlDataReader = myCommand.ExecuteReader()
Try
 If myReader.Read() Then ' assume that one record returned means success
 FormsAuthentication.RedirectFromLoginPage("NextPage.aspx")
 End If
Finally
 myReader.Close()
 myConnection.Close()
End Try

The hacker is well aware of this style of coding. They realize that a SELECT statement takes the inputs and runs a query.
They can even imagine the overall structure of that SELECT statement. Here’s how they hack your code. They change the
inputs to change the meaning of the SELECT statement. All it takes is a single quote at or near the beginning of the text.

Suppose they supply this input to UserNameTextBox:

'--

and a password of “hacked”. The value of the variable mySelectSQL is now:

 SELECT * FROM Logins WHERE UserName=''--' AND Password='hacked'

SQL uses single quotes to enclose a string and double minuses to indicate a comment, which eliminates everything to the
right. The SQL database then runs this code:

 SELECT * FROM Logins WHERE UserName=''

Unless you have a record with an empty string in the UserName field, this returns no records and they cannot login. But they
found a hole to exploit. From here, they can launch their attack.

1. If they know a particular user name, perhaps an administrator user name like ‘admin’, they can login with this text:

admin'--

2. Otherwise, they start hacking with text like this:

' OR 1=1;--

' UNION ALL SELECT * FROM Logins WHERE ''='

';SELECT * FROM Logins--

';DROP TABLE Login--

';SHUTDOWN--

Certainly they don’t know the names of your tables just yet but once they have found a hole they can learn a lot about the
structure of your database. Take a look at the “References” section for guides on just how they do this. Remember: they have
the time, resources and determination to do this.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 30 of 277
http://www.PeterBlum.com

Helpful Hints

 Any ad-hoc SQL statement that takes inputs can be victimized. Look through your code for all ad-hoc statements.

 You don’t have to use string concatenation to build an ad-hoc SQL statement. Perhaps you have a string with tokens that
are replaced using the String.Format() method like this:

String.Format("SELECT * FROM Logins WHERE UserName='{0}' AND Password='{1}'",
UserNameTextBox.Text, PasswordTextBox.Text)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 31 of 277
http://www.PeterBlum.com

Stored Procs that use EXEC() on the inputs
Just because you pass your inputs into a stored procedure doesn’t mean the stored procedure will treat them safely. Stored
procs can run strings as SQL statements too, using the EXEC() command. If you use an EXEC() statement in your stored
procs, don’t pass ad-hoc SQL statements as parameter of a stored proc for it to run with an EXEC(). If you do, the same
attacks can be launched as described above.

You might also build an ad-hoc SQL statement within the stored procedure using inputs from the user. Again, if they are not
cleaned up, the results are the same: the hacker’s input transforms the string containing SQL within the stored proc.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 32 of 277
http://www.PeterBlum.com

Blocking SQL Injection
You already have most of the tools needed to block SQL injection. You just need to use them.

Click on any of these topics to jump to them:

 Validators from Peter’s Data Entry Suite

 PageSecurityValidator and FieldSecurityValidator

 Don’t Show Exceptions; Log Them

Validators from Peter’s Data Entry Suite
Validators from DES can detect illegal text patterns. Apply them to every suitable visible field.

 The DataTypeCheckValidator is very effective at blocking injection attacks when the DataType is not String or Case
Insensitive String. Integers, decimals, currencies and dates simply cannot represent the patterns of injection attacks.

 The CharacterValidator limits the set of characters allowed in the text. If you do not permit single quote ('), minus (-),
or semicolon (;), then this validator provides excellent protection against SQL injection.

 Regular expressions can impose a particular pattern that does not work well for SQL injection. They can also define a
character set limit to further stop SQL injection. Always use the RegexValidator when your textbox has a particular
pattern. For the most protection, be sure that the expression covers every character in text by using the ^ and $ regex
symbols. Use the PageSecurityValidator.DescribeValidator() method when you know that your regular
expression will provide good protection.

 The CompareToStringValidator limits text to a specific list of strings. When the MatchTextRule is set to Exact, no
SQL injection attack is possible.

 You may create a CustomValidator that can block an attack. Use the
PageSecurityValidator.DescribeValidator() method to indicate this capability to the Security Analysis
Report.

WARNING: Your CustomValidator must block the attack through server-side code. Any client-side code you supply can
be circumvented by the hacker.

PageSecurityValidator and FieldSecurityValidator
The PageSecurityValidator and FieldSecurityValidator have properties to detect SQL injection at various levels – Low,
MediumLow, Medium, MediumHigh, and High – on all types of inputs. Turn on the detection and use the highest level
unless one of these rules apply:

 The Security Analysis Report tells you that it is safe to turn it off. This usually happens when a validator confirms the
type is integer, decimal, or date; when the string contains a special set of characters; or when the string contains only a
fixed list of possible values.

These validators will log the attacks; Peter’s Data Entry Suite validators will not. If you want to log every attack, use
these validators in addition those from Peter’s Data Entry Suite on each field. Be aware that you are asking the server
to do a lot more work to catch the rare attack. Consider that hackers will likely use fields that will store their values as
text for their attacks.

 The field requires the same words as common SQL statements, such as “select” and “create”. In most cases, you reduce
the SQL Detection Level to match the requirements of the field. If the field allows SQL statements as part of the text,
turn it off altogether and neutralize it.

Don’t Show Exceptions; Log Them
Never show an error message that helps the hacker figure out the next step. If there is an unexpected error on the page, log it
with the LogAndRespond Engine and redirect them to another page with enough info to communicate that the input was
invalid.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 33 of 277
http://www.PeterBlum.com

Once setup, the LogAndRespond Engine can track any kind of errors for you, logging to the event log, a text file and/or
email. Set up exception handlers on each page (Page.Error event handler) or globally (Application_Error() method
in Global.asax) and pass the exception to
PeterBlum.DES.Security.LogAndRespond.Current.TrackException().

If you have other kinds of errors, use PeterBlum.DES.Security.LogAndRespond.Current.TrackError().

When telling the user about the error, the message itself really counts. There is a big difference between “There was an error
with your input.” and “There was a database error”. From the second error, the hacker knows that the field has a hole that
feeds their SQL statements in. They will continue to enter SQL statements until the error goes away (because the database
accepted their statements!)

To set this up, see the section “Securing the Web Application” in the Input Security Installation Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 34 of 277
http://www.PeterBlum.com

Neutralizing SQL Injection
Neutralize every input that you use, whether you store it in a database, a cookie, pass it to a web service or supply it to
another page. Look for any of these input sources in your code: a property that gets textual data from a web control,
Request.Form , Request.QueryString, and Request.Cookies.

Click on any of these topics to jump to them:

 Clean Up Text When Using Ad-Hoc Statements

 Pass Each Input as a Parameter

 Ad-hoc Statements used by Stored Procedures

Clean Up Text When Using Ad-Hoc Statements
If you use ad-hoc statements, clean up the text to render special characters harmless. Since every SQL injection attack
requires a single quote, use the PageSecurityValidator.CleanupInput()or
TextLengthSecurityValidator.CleanupInput() method to convert each single quote into a pair of single
quotes. The SQL Language treats a pair of single quotes as the character single quote instead of a string delimiter.

Most SQL injection attacks require a way to safely treat the remaining text that you supply in your SQL statement. (The stuff
to the right of the input.) That is almost always a SQL comment (--) or another single quote. The CleanupInput()
methods remove all dash character pairs (representing a SQL comment).

Important: Test your code with a typical hack string such as ' OR 1=1--. You want to see that the data is stored, not
executed. You also want to see that all code that retrieves this text has the correct results. If you reuse the data retrieved in
another SQL statement, clean it up again, converting single quotes to double quotes.

WARNING: Clever hackers will attack fields with a specific text length limit. They will put a single quote at the last accepted
character of the text. Your code will attempt to add another quote but since its outside the length of the column, it will likely
be stripped off. This is a weakness and one very good reason why not to use ad-hoc statements. The CleanupInput() methods
can support a length limit to notify you when this happens.

Example

In addition to the PageSecurityValidator, the password has a TextLengthSecurityValidator which provides its own
CleanupInput() method.

[C#]

string vCleanUserName = PageSecurityValidator1.CleanupInput(
 UserNameTextBox.Text, true, true, UserNameTextBox, "");
string vCleanPassword = TextLengthSecurityValidator1.CleanupInput("");
Login(vCleanUserName, vCleanPassword);

[VB]

Dim vCleanUserName As String = PageSecurityValidator1.CleanupInput(_
 UserNameTextBox.Text, True, True, UserNameTextBox, "")
Dim vCleanPassword As String = TextLengthSecurityValidator1.CleanupInput("")
Login(vCleanUserName, vCleanPassword)

If you retrieve a string from the database and later use it in an ad-hoc SQL statement, clean it up again. Suppose the hacker
enters “'; SELECT * FROM Logins”. You clean it up by converting the single quote to a pair of single quotes and save
it. Inside the database, it’s stored with one single quote. So when you retrieve it, it now has one single quote and it is ready to
cause a SQL attack.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassquerystringtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 35 of 277
http://www.PeterBlum.com

Pass Each Input as a Parameter
This is the recommended approach.

Abandon ad-hoc SQL statements. Pass each input as a parameter into a stored procedure or a parameterized SQL statement.
ADO.NET and your database isolate the parameter’s text as data and do not run its contents (unless your stored proc passes it
to an EXEC statement).

You should not use the CleanupInput() methods in this case because ADO.NET parameters work in a similar way.
However, you should still indicate that the cleanup was done by calling the
PageSecurityValidator.SQLNeutralized() method.

Important: Test your code with a typical hack string such as ' OR 1=1--. You want to see that the data is stored, not
executed. You also want to see that all code that retrieves this text has the correct results. If you reuse the data retrieved in
another SQL statement, clean it up again, converting single quotes to double quotes.

Using a Parameterized SQL Statement

[C#]

SqlDataAdapter vCmd = new SqlDataAdapter(
 "select * from Logins where username=@UserName and password=@Password",
 vConnection);
SqlParameter vUserNameParm = vCmd.SelectCommand.Parameters.Add(
 "@UserName", SqlDbType.VarChar, 30);
vUserNameParm.Value = UserNameTextBox.Text;
SqlParameter vPasswordParm = vCmd.SelectCommand.Parameters.Add(
 "@Password", SqlDbType.VarChar, 20);
vPasswordParm.Value = PasswordTextBox.Text;
PageSecurityValidator1.SQLNeutralized(UserNameTextBox, "Parameter: @UserName");
PageSecurityValidator1.SQLNeutralized(PasswordTextBox, "Parameter: @Password");

 [VB]

Dim vCmd As SqlDataAdapter = New SqlDataAdapter(_
 "select * from Logins where username=@UserName and password=@Password", _
 vConnection)
Dim vUserNameParm As SqlParameter = vCmd.SelectCommand.Parameters.Add(_
 "@UserName", SqlDbType.VarChar, 30)
vUserNameParm.Value = UserNameTextBox.Text
Dim vPasswordParm As SqlParameter = vCmd.SelectCommand.Parameters.Add(_
 "@Password", SqlDbType.VarChar, 20)
vPasswordParm.Value = PasswordTextBox.Text
PageSecurityValidator1.SQLNeutralized(UserNameTextBox, "Parameter: @UserName")
PageSecurityValidator1.SQLNeutralized(PasswordTextBox, "Parameter: @Password")

Using a Stored Proc

Here the stored procedure SP_Login takes two parameters, @UserName and @Password.

[C#]

SqlDataAdapter vCmd = new SqlDataAdapter("SP_Login", vConnection);
vCmd.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter vUserNameParm = vCmd.SelectCommand.Parameters.Add(
 "@UserName", SqlDbType.VarChar, 30);
vUserNameParm.Value = UserNameTextBox.Text;
SqlParameter vPasswordParm = vCmd.SelectCommand.Parameters.Add(
 "@Password", SqlDbType.VarChar, 20);
vPasswordParm.Value = PasswordTextBox.Text;
PageSecurityValidator1.SQLNeutralized(UserNameTextBox, "SP_Login");
PageSecurityValidator1.SQLNeutralized(PasswordTextBox, "SP_Login");

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 36 of 277
http://www.PeterBlum.com

 [VB]

Dim vCmd As SqlDataAdapter = New SqlDataAdapter("SP_Login", vConnection)
vCmd.SelectCommand.CommandType = CommandType.StoredProcedure
Dim vUserNameParm As SqlParameter = vCmd.SelectCommand.Parameters.Add(_
 "@UserName", SqlDbType.VarChar, 30)
vUserNameParm.Value = UserNameTextBox.Text
Dim vPasswordParm As SqlParameter = vCmd.SelectCommand.Parameters.Add(_
 "@Password", SqlDbType.VarChar, 20)
vPasswordParm.Value = PasswordTextBox.Text
PageSecurityValidator1.SQLNeutralized(UserNameTextBox, "SP_Login")
PageSecurityValidator1.SQLNeutralized(PasswordTextBox, "SP_Login")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 37 of 277
http://www.PeterBlum.com

Ad-hoc Statements used by Stored Procedures
Avoid building ad-hoc statements within the Stored Procs from your inputs unless you have cleaned the text. Within a stored
proc, you do not have access to the PageSecurityValidator.CleanupInput() method. You will have to replace
single quotes with a pair of single quotes within the proc for any textual value. You should also remove all pairs of minus
characters (they represent a SQL comment).

This example shows the SQL REPLACE() function replacing a single quote with a pair. Remember that SQL demands you
enter a pair just to represent one. It also removes pairs of minus characters.

create proc SP_Login
 @UserName varchar(30),
 @Password varchar(20)

as

 declare @cleanUserName varchar(255) ' leave room for additional quotes
 declare @cleanPassword varchar(255) ' leave room for additional quotes
 declare @QueryStmt varchar(255)

 set @cleanUserName = REPLACE(@UserName, '''','''''')
 set @cleanPassword = REPLACE(@Password, '''','''''')
 set @cleanUserName = REPLACE(@cleanUserName, '--','')
 set @cleanPassword = REPLACE(@cleanPassword, '--','')

 set @QueryStmt = "select * from Logins where UserName='" +
 @cleanUserName + "' and Password='" + @cleanPassword + "'"
 exec (@QueryStmt)

Avoid passing ad-hoc SQL statements as parameters to Stored Procs unless you have cleaned up the text. A common case is
to build the WHERE clause in .net code and pass the entire string as a parameter for use by an EXEC() statement within the
stored proc.

Important: Test your code with a typical hack string such as ' OR 1=1--. You want to see that the data is stored, not
executed. You also want to see that all code that retrieves this text has the correct results. If you reuse the data retrieved in
another SQL statement, clean it up again, converting single quotes to double quotes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 38 of 277
http://www.PeterBlum.com

References
Here are some articles on the web that cover the topic of SQL injection Attacks. Many will reveal the exact ways hackers will
attack you. Some of these are from other companies that have expertise in the field who are there to provide similar solutions
to Peter’s Input Security.

Advanced SQL Injection In SQL Server Applications by Chris Anley

(more) Advanced SQL Injection by Chris Anley

SQL Injection: Are your Web Applications Vulnerable? from SPI Labs

SQL Injection: Modes of Attack, Defence, and Why It Matters by Stuart McDonald

SQL Injection Signatures Evasion from IMPERVA

Blind SQL Injection from IMPERVA

Manipulating SQL Server Using SQL_Injection by Cesar Cerrudo

For more, just type “SQL Injection” into Google.

http://www.nextgenss.com/papers/advanced_sql_injection.pdf�
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf�
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf�
http://www.governmentsecurity.org/articles/SQLInjectionModesofAttackDefenceandWhyItMatters.php�
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html�
http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html�
http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 39 of 277
http://www.PeterBlum.com

Script Injection Primer
Script injection attacks, also known as Cross Site Scripting (XSS) attacks, uses the browser to take unexpected action on the
website user, including but not limited to redirecting to another page and extracting values from cookies. While SQL
injection creates harm to you through your website, script injection creates direct harm to your users.

Note: To best understand this topic, you should have an understanding of the <script> tag, HTML attributes that fire events,
JavaScript, and DOM or DHTML.

To launch an attack, the hacker needs to know the following:

 Text that they enter will show to other site users. A common example is a message board. The hacker creates their
attacks within messages. Another common example is setting up a fake auction at an auction site as users are enticed to
read the auction page.

 Knowledge of HTML, a scripting language (usually JavaScript), and the object model of the browser: DHTML or DOM.

It’s very easy for the hacker to determine if an input allows an attack. They enter text with HTML like this and see if the
browser executes it when the page is redrawn:

<script language='javascript'>alert('test');</script>

You can easily neutralize this kind of attack by using Server.HtmlEncode(). It replaces special HTML characters with
HTML tokens for those characters:

<script language='javascript'>alert('test');</script>

When it’s sent back to the browser, it appears as the original text and cannot run the scripts.

Suppose you detect and block the <script> tag but do not use HtmlEncode because you want to support other HTML tags.
The hacker will continue with this test:

The onload statement runs as the tag is loaded.

You should expect the hacker to have an arsenal of ideas like this. You need a solid defense.

Click on any of these topics to jump to them:

 Blocking Script Injection

 Validators from Peter’s Data Entry Suite

 PageSecurityValidator and FieldSecurityValidator

 Neutralizing Script Injection

 Prevent all HTML tags

 Prevent some HTML tags

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 40 of 277
http://www.PeterBlum.com

Blocking Script Injection
To block script injection, you must detect these HTML tags: <script>, <object>, <applet>, <embed>, <frame>
and several other tags. For any other tag that you permit, you must look for signs of JavaScript, JScript or VBScript and
DOM or DHTML objects, methods and properties.

This section covers:

 Validators from Peter’s Data Entry Suite

 PageSecurityValidator and FieldSecurityValidator

Validators from Peter’s Data Entry Suite
Validators from DES can detect illegal text patterns, making it impossible to enter HTML tags, scripting code and DOM or
DHTML. Apply them to every suitable visible field.

 The DataTypeCheckValidator is very effective at blocking injection attacks when the DataType is not String or Case
Insensitive String. Integers, decimals, currencies and dates simply cannot represent the patterns of injection attacks.

 The CharacterValidator limits the set of characters allowed in the text. If you do not permit < or >, period (.), semicolon
(;), left parenthesis ((), right parenthesis ()), or equals (=) then this validator provides excellent protection against
script injection.

 The RegexValidator may provide enough protection based on the expression that you define. However, most expressions
are not safe and therefore this validator generally requires the detection features of the FieldSecurityValidator or
PageSecurityValidator. Use the PageSecurityValidator.DescribeValidator() method when you know
that your regular expression will provide good protection.

 CompareToStringValidator limits text to a specific list of strings. When the MatchTextRule is set to Exact, no script
injection attack is possible.

 You may create a CustomValidator that can block an attack. Use the
PageSecurityValidator.DescribeValidator() method to indicate this capability to the Security Analysis
Report.

WARNING: Your CustomValidator must block the attack through server-side code. Any client-side code you supply can
be circumvented by the hacker.

PageSecurityValidator and FieldSecurityValidator
The PageSecurityValidator and FieldSecurityValidator have properties to detect script injection on all types of inputs. They
always block <script>, <object>, <applet>, <embed>, <frame>, <iframe>, <frameset>, <html>,
<meta>, <style>, <layer> and <ilayer> tags (unless you modify the <illegaltags> section of the
master.config file). You can define a list of tags that are allowed or denied. In addition, Peter’s Input Security can detect
event attributes on tags that you permit; prevent the dangerous DOM and DHTML statements used by hackers; and even
prevent any string that contains the < or > characters.

Turn on the detection features and allow the fewest possible tags unless the Security Analysis Report tells you that it is safe
to turn it off. This usually happens when a validator confirms the type is integer, decimal, or date; when the string contains a
special set of characters; or when the string contains only a fixed list of possible values.

These validators will log the attacks; Peter’s Data Entry Suite validators will not. If you want to log every attack, use these
validators in addition those from Peter’s Data Entry Suite on each field. Be aware that you are asking the server to do a lot
more work to catch the rare attack. Consider that hackers will likely use fields that will store their values as text for their
attacks.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 41 of 277
http://www.PeterBlum.com

Neutralizing Script Injection
Neutralize every input that you use, whether you store it in a database, a cookie, pass it to a web service or supply it to
another page. Look for any of these input sources in your code: a property that gets textual data from a web control,
Request.Form , Request.QueryString, and Request.Cookies.

This section covers:

 Prevent all HTML tags

 Prevent some HTML tags

Prevent all HTML tags
If you do not permit any HTML tags, use the PageSecurityValidator.CleanupInput() method. It calls
Server.HtmlEncode() and tells the Security Analysis Report that the text has been neutralized.

If you are using the TextLengthSecurityValidator on a web control, use the
TextLengthSecurityValidator.CleanupInput() method to do the same.

Prevent some HTML tags
If you do permit HTML tags, you have to neutralize individual tags that do not match the list that you want to maintain as
true HTML tags. Use the PageSecurityValidator.CleanupInputEncodeInvalidTags() or
PageSecurityValidator.CleanupInputRemoveInvalidTags() methods.

If you are using the TextLengthSecurityValidator on a web control, use the
TextLengthSecurityValidator.CleanupInput() method with the permitted tags defined in the
ValidHTMLTags property. Set the CleanupTagRules property to RemoveTag or EncodeTag to determine what to do
with any invalid tags.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassquerystringtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 42 of 277
http://www.PeterBlum.com

Tampering Primer
Validators are your defense against tampering on visible fields. They are gentle with the user, expecting traditional user
errors and responding with useful error messages. After all, you expect the visible field data to change. You don’t expect
other inputs changed, except through your own code. So many programmers fail to put up any defenses around hidden fields,
query strings and cookies. That leaves a big hole for hackers and one they often exploit.

Click on any of these topics to jump to them:

 Tampering with Hidden Fields

 Blocking Hidden Field Tampering

 Neutralizing Hidden Field Tampering

 Tampering with Query String Parameters

 Preventing Query String Tampering

 Blocking Query String Tampering

 Neutralizing Query String Tampering

 Tampering with Cookies

 Preventing Cookie Tampering

 Blocking Cookie Tampering

 Neutralizing Cookie Tampering

 Tampering with Visible Fields

 Invisible TextBoxes

 Changing Values on Non-TextBox Form Inputs

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 43 of 277
http://www.PeterBlum.com

Tampering with Hidden Fields
Click on any of these topics to jump to them:

 Blocking Hidden Field Tampering

 Neutralizing Hidden Field Tampering

The HTML for a hidden field looks like this:

<input type='hidden' id='[some id]' name='[some name]' value='[initial value]' />

The value attribute is only expected to change if you’ve written some JavaScript to change it. For example:

document.getElementById('Hidden1').value = "new value";

The hacker easily tampers with it using these steps:

1. Capture the page. Use File; Save As in IE. It makes a complete, working copy, including all of the associated script files,
style sheets, and images.

2. Modify the action= attribute of the <form> tag to use the full URL path to the page.

3. Edit a hidden field value on the page.

4. Remove any javascript that modifies the field (or just turn off javascript on their browser).

5. Open their copy of the page in the browser.

6. Submit the page.

They may launch several types of attacks, depending on their goals.

 SQL or script injection - See “SQL Injection Primer” and “Script Injection Primer”.

 Provide an unexpected value that benefits them – Suppose that you are building an online shopping site. As the user
visits a product page, you use a hidden field to preserve the price of the product. When the user clicks “Buy It”, your
product page is submitted and your code retrieves the price of the product, passing it directly to the shopping cart code.

If the hacker discovers this, they simply change the price to something much lower and pay for the product through your
normal checkout system (perhaps using a stolen credit card, if they hope to avoid you identifying them later).

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 44 of 277
http://www.PeterBlum.com

Blocking Hidden Field Tampering
Don’t bother to try to neutralize these attacks. Detect and block them.

The PageSecurityValidator provides the tools. By default, SQL and script injection are detected with the
DetectSQLInjection and DetectScriptInjection properties. The SQL detection level is High when using the
DetectSQLInjection property.

Use the HiddenFieldRules property to customize the SQL and script injection rules and to define your anti-tampering rules.
You add PeterBlum.DES.Security.HiddenFieldRule objects to the HiddenFieldRules collection, one for each
hidden field.

Once a hidden field appears in the HiddenFieldRules collection, its own DetectInjection property takes over with the
supporting properties SQLDetectionLevel, HTMLTagMode and HTMLTags.

The remaining properties on a PeterBlum.DES.Security.HiddenFieldRule object protect against other forms of
tampering. With some, they provide enough protection to set the DetectInjection property to false. These rules are:

 DataType – You should set the DataType property because it will help prevent not only tampering but SQL and script
injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will accept.
Because its character set is too limited for SQL and script injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when you
have a set of possible values. Use the TypeFormatting property to contain a semicolon delimited list of strings
like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set that
does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((), and
right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can set
DetectInjection to false.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Allow blank values – Use the BlankValueAllowed property to determine if a blank field is valid or not.

 Prevent changes – If the text should not change between when the page was created and post back, set the original value
of the text in OriginalValue. Set it as you assign a value to the hidden field.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 45 of 277
http://www.PeterBlum.com

Neutralizing Hidden Field Tampering
The process of neutralizing hidden field tampering is site specific. You have to determine whether a default value is used, the
parameter can be abandoned, or some other action is taken. That’s why it is better just to detect and block it.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 46 of 277
http://www.PeterBlum.com

Tampering with Query String Parameters
Click on any of these topics to jump to them:

 Preventing Query String Tampering

 Blocking Query String Tampering

 Neutralizing Query String Tampering

Most users modify query string parameters at one time. These parameters reveal data and are very editable. For example,
users see:

http://www.somesite.com?RecordID=1356

While on some other page, they want to go back to that page, they re-enter that URL.

Your site probably can handle this kind of tampering. Here are some types of tampering that you need to protect:

 SQL And script injection. See “SQL Injection Primer” and “Script Injection Primer”.

 Provide an unexpected value that benefits them – It is easy to use query string parameters to pass along important types
of information such as passwords, names, and values. Any time that you do this, its very attractive to a user to edit it.

 Getting into a secure area – Suppose you have a site where some pages are restricted. Your site demands a login to
access those pages. If your site exposes part of the login in the query string, such as loginID=1234, the user can modify it
until they get a login that is more powerful, allowing them into the restricted area.

IMPORTANT: Never use the query string for any form of identity that allows access to a secure area.

IMPORTANT: Always authenticate the identity of the user when a page is requested. If your site has several security
roles, be sure the current user is authorized to be on that page.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 47 of 277
http://www.PeterBlum.com

Preventing Query String Tampering
The best way to stop tampering is to prevent users from entering their own query string parameters.

Consider these instead of using query string parameters that supply data:

 Use Server.Transfer() to pass values from controls on one page to another.

 If you are preserving the value for use in post back, use the page’s ViewState.

 Encrypt the entire query string as the text of one parameter. Here are some resources that provide the code to do this:

o Secure Query Strings: Preventing the Tampering of Data Passed between Applications by Tim Shakarian on
DotNetJunkies.

o Encrypting QueryStrings with .NET by Tiberius OsBurn on DevCity.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassTransferTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconmantainingstateincontrol.asp�
http://www.dotnetjunkies.com/HowTo/99201486-ACFD-4607-A0CC-99E75836DC72.dcik�
http://www.dotnetjunkies.com/�
http://www.devcity.net/net/printable_article.aspx?cid=2&y=2002&m=9&d=4�
http://www.devcity.net/�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 48 of 277
http://www.PeterBlum.com

Blocking Query String Tampering
The PageSecurityValidator provides the tools to detect and block query string tampering. The validator has three properties
that are useful in protecting you: QueryStringRules, DetectInjectionSymbolsInQueryString, and
NoChangesToQueryString.

PageSecurityValidator.QueryStringRules Property

Use the QueryStringRules property to stop injection and tampering attacks. You add
PeterBlum.DES.Security.ParameterRule objects to the QueryStringRules collection, one for each query string
parameter that concerns you.

The remaining properties on a PeterBlum.DES.Security.ParameterRule object protect against other forms of
tampering. With some, they provide enough protection to set the DetectInjection property to false. These rules are:

 DataType – You should set the DataType property because it will help prevent not only tampering but SQL and script
injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will accept.
Because its character set is too limited for SQL and script injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when you
have a set of possible values. Use the TypeFormatting property to contain a semicolon delimited list of strings
like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set that
does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((), and
right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can set
DetectInjection to false.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Allow blank values – Use the BlankValueAllowed property to determine if a blank field is valid or not.

 Required – Use the Required to require query string parameter in the query string at all times.

 Other parameters are required – If there are other query string parameters that are required when parameter this is
present, add their names to the OtherNamesRequired property in a semicolon-delimited list. For example:
name1;name2.

 Other parameters are illegal – If there are other query string parameters that are illegal when this parameter is present,
add their names to the OtherNamesIllegal property in a semicolon-delimited list. For example: name1;name2.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 49 of 277
http://www.PeterBlum.com

PageSecurityValidator.DetectInjectionSymbolsInQueryString Property

The PageSecurityValidator.DetectInjectionSymbolsInQueryString property is another defense against injection attacks
and does not require setting up individual QueryStringRules. However, it demands that the entire query string lacks any of
these symbols: <, >, single quote (') and “--”.

This property is not a strong defense against injection attacks. There may be hackers who find a way to avoid those
characters. Nor can it stop tampering.

PageSecurityValidator. NoChangesToQueryString Property

When a page is posted back, the <form> tag supplies the query string, not the browser. For example:

<form name="form1" method="post"
 action="WebForm1.aspx?parm1=356&parm2=review%20it" id="form1">

The hacker can capture the page and modify the query string within the action attribute to attack your site.

The PageSecurityValidator.NoChangesToQueryString property confirms that the query string has not been tampered with
as the page is posted back.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 50 of 277
http://www.PeterBlum.com

Neutralizing Query String Tampering
The process of neutralizing query string tampering is site specific. You have to determine whether a default value is used, the
parameter can be abandoned, or some other action is taken. It is better to detect and block tampering.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 51 of 277
http://www.PeterBlum.com

Tampering with Cookies
Click on any of these topics to jump to them:

 Preventing Cookie Tampering

 Blocking Cookie Tampering

 Neutralizing Cookie Tampering

A cookie is stored on the user’s hard disk as a text file. Can it be any easier for a hacker to access and modify this type of
data? All a hacker needs is to understand that file’s format and the cookies that your site adds. Sites often give cookies
obvious names and data, making this easy.

Cookies are an input that is not often validated on the server. Yet they are passed into your database as parameters or ad-hoc
SQL statements. So hackers will frequently use them as their conduit for an attack.

Here are some types of tampering that you need to protect:

 SQL and script injection. See “SQL Injection Primer” and “Script Injection Primer”.

 Provide an unexpected value that benefits them – It is easy to use cookies to pass along important types of information
such as personal information. Any time that you do this, it is very attractive to a user to edit it.

 Getting into a secure area – If you store login information or anything that helps authenticate or authorize a user’s access,
it is available to the hacker.

IMPORTANT: Never use cookies for any form of identity that allows access to a secure area.

IMPORTANT: Always authenticate the identity of the user when a page is requested. If your site has several security
roles, be sure the current user is authorized to be on that page.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 52 of 277
http://www.PeterBlum.com

Preventing Cookie Tampering
 See the topic “Using Cookies” in Chapter 3 of “Hacking the Code” by Mark M. Burnett and James C. Foster from

Syngress Publishing, Inc.

 Consider encrypting your cookies

o Encrypting Cookie Data with ASP.NET by Wayne Plourde on http://www.15seconds.com/

o Bulletproof persistent cookies to increase security by Robert L. Bogue on http://builder.com

http://www.15seconds.com/issue/021210.htm�
http://www.15seconds.com/�
http://builder.com.com/5100-6371-5085802.html�
http://builder.com.com/�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 53 of 277
http://www.PeterBlum.com

Blocking Cookie Tampering
The PageSecurityValidator provides the tools to detect and block cookie tampering. Use the CookieRules property to stop
injection and tampering attacks. You add PeterBlum.DES.Security.CookieRule objects to the CookieRules
collection, one for each cookie that you use on the page.

The remaining properties on a PeterBlum.DES.Security.CookieRule object protect against other forms of
tampering. With some, they provide enough protection to set the DetectInjection property to false. These rules are:

 DataType – You should set the DataType property because it will help prevent not only tampering but SQL and script
injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will accept.
Because its character set is too limited for SQL and script injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when you
have a set of possible values. Use the TypeFormatting property to contain a semicolon delimited list of strings
like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set that
does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((), and
right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can set
DetectInjection to false.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Allow blank values – Use the BlankValueAllowed property to determine if a blank field is valid or not.

 Required – Use the Required property to require the cookie at all times.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 54 of 277
http://www.PeterBlum.com

Neutralizing Cookie Tampering
The process of neutralizing cookie tampering is site specific. You have to determine whether a default value is used, the
parameter can be abandoned, or some other action is taken. It is better to detect and block tampering.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 55 of 277
http://www.PeterBlum.com

Tampering with Visible Fields
Visible fields can be tampered with in several unexpected ways.

Click on any of these topics to jump to them:

 Invisible TextBoxes

 Changing Values on Non-TextBox Form Inputs

Invisible TextBoxes
Your web form may have a textbox made invisible with the style="visibility:hidden" or
style="display:none" attribute. This textbox will still be generated as HTML on the client-side along with a fully
hackable value that is passed to you when the form is posted back.

Treat invisible textboxes as if they were visible applying all the necessary validators to prevent attacks.

Note: Disabled textboxes do not pass data back to the server.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 56 of 277
http://www.PeterBlum.com

Changing Values on Non-TextBox Form Inputs
There are three types of HTML tags that post back data into the Request.Form collection: <input>, <textarea>, and
<select>. You anticipate the value from a textbox (<input type='text'>, <input type='file'> or
<textarea>) to be changed. The hacker will attempt to change the value of a ListBox, DropDownList, CheckBox, or
RadioButton in hope that your code uses the raw value directly from Request.Form.

It’s very easy to prevent this attack from working. Use the controls Microsoft has provided and always access their values
through the properties designed for getting and setting the data value. In fact, most controls that maintain data have such a
property and usually know how to handle illegal values by setting to a valid default.

Here are the control classes from Microsoft that have safe data input properties:

Class Property

System.Web.UI.WebControls.ListControl and its subclasses:
ListBox, DropDownList, CheckBoxList, RadioButtonList

SelectedIndex

System.Web.UI.WebControls.CheckBox and RadioButton Checked

System.Web.UI.HtmlControl.HtmlSelect SelectedIndex

System.Web.UI.HtmlControl.HtmlInputRadioButton, HtmlInputCheckBox Checked

System.Web.UI.WebControl.Calendar (uses hidden fields for data) SelectedDate

Even specialized textbox controls, like the DES IntegerTextBox control, provide properties that clean up the inputs.

The controls from PeterBlum.com offer safe data input properties as shown here:

Class Property

PeterBlum.DES.IntegerTextBox IntegerValue, IntegerBindable,
IntegerNullable

PeterBlum.DES.DecimalTextBox, CurrencyTextBox, PercentTextBox DoubleValue, DoubleBindable,
DoubleNullable, DecimalValue

PeterBlum.DES.DateTextBox, MonthYearTextBox, AnniversaryTextBox DateValue, DateBindable, DateNullable

PeterBlum.DES.TimeOfDayTextBox DateTimeValue, DateTimeBindable,
DateTimeNullable, TimeValue, TextNullable,
TimeAsHours, TimeAsSeconds

PeterBlum.DES.DurationTextBox TimeValue, TextNullable, TimeAsHours,
TimeAsSeconds

PeterBlum.DES.Calendar SelectedDate, SelectedDateBindable,
SelectedDateNullable

PeterBlum.DES.MonthYearPicker Month, Year, MonthYearAsDateTime,
MonthYearAsDateTimeBindable,
MonthYearAsDateTimeNullable

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 57 of 277
http://www.PeterBlum.com

Other Forms Of Attacks
There are many types of attacks that Peter’s Input Security does not cover. Now that you have the security mindset, it’s a
good time to point them out and direct you to some resources.

Click on any of these topics to jump to them:

 Brute Force Login Attack

 Protecting the ViewState

 References

Brute Force Login Attack
One of the most common attacks is to find a way to login to a site. The hacker will hit your login page many times, using
automated software. Often this attack occurs from many servers that have been hijacked, making it harder to detect that a
single attack is underway.

Here are some ideas to apply to your login system.

 Don’t give away information

o Login names are often seen on sites that have message boards. Once the hacker has a login name, they greatly
speed up their search. After all, they have half of what is needed to login. Due to the use of common password
names, they can launch a dictionary attack from those common names and get pretty far.

Solution: Avoid showing login names in general areas. Define separate user names from logins and require the
two names to be different.

o Avoid making error messages that tell what was wrong. Say “This login was not accepted” instead of “The
password was incorrect” (letting them know the user name was valid).

 Slow them down – Make them frustrated by delays or added complexity to the login code.

o Enforce complex passwords that are not realistic for a dictionary based attack. Complex passwords often mix
letters and digits, are case sensitive, require many characters, and prevent any common word from being used.

o After several failed attempts, put up a page that does not allow login for a period of time. Use the Slow Down
Manager to implement this page.

 Change the normal two-field entry to break their existing hacking code. Ask for a third source of data.

o Ask for some additional information already in their personal information such as their postal code or last 4
digits of a phone number.

o Use CAPTCHAs to prevent most automated attacks. (Another article:
http://www.devx.com/dotnet/Article/21308)

http://www.captcha.net/�
http://www.devx.com/dotnet/Article/21308�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 58 of 277
http://www.PeterBlum.com

Protecting the ViewState
The ViewState is text on the web page within a hidden input field with the ID “__VIEWSTATE”. It’s data is not very secure,
although it can be encoded in a way specific to your server.

This article from Scott Mitchell covers several key security aspects of the ViewState:

Understanding ASP.NET View State.

Consider the topics within the article for security:

 Specifying Where to Persist the View State

 View State and Security Implications

http://msdn2.microsoft.com/en-us/library/ms972976.aspx�
http://msdn2.microsoft.com/en-us/library/ms972976.aspx#viewstate_topic10�
http://msdn2.microsoft.com/en-us/library/ms972976.aspx#viewstate_topic12�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 59 of 277
http://www.PeterBlum.com

References
There are an enormous number of resources for security available. Use a search engine to find them. Here are several
references used in preparing Peter’s Input Security.

 Microsoft offers this complete book online: Improving Web Application Security: Threats and Countermeasures by J.D.
Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla and Anandha Murukan.

 Microsoft offers this topic: Security Code Review

 “Hacking the Code” by Mark M. Burnett and James C. Foster, from Syngress Publishing, Inc (ISBN: 1-932266-65-8).

http://msdn2.microsoft.com/en-us/library/ms994921.aspx�
http://msdn2.microsoft.com/en-us/library/ms998395.aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 60 of 277
http://www.PeterBlum.com

Securing A Page
Click on any of these topics to jump to them:

 Goals

 Follow these Steps on Each Page

Building a secure page is not a simple process. That’s because each page has its own structure and needs specific validation
rules. If you hoped Peter’s Input Security would just block everything automatically, consider this:

 Some of your inputs allow words and patterns found in SQL and script injection. For example, you want users to enter
“select” and “print” into some of your text boxes.

 You often have cookies supplied with each request that have no use on the current page. They should not be analyzed.

 Peter’s Input Security has no idea what the data types and rules are to prevent tampering.

This section will take you through setting up input security on a page. After you get familiar with the process, it will be easy
to do.

NOTE: At this point, the Security Analysis Report should be set up as described in the “Configure for Reporting” section of
the Input Security Installation Guide. Confirm that the web.config file has no keys in its <appSettings> section
that prevent generating a report on this page.

Goals
 Identify all inputs – The Security Analysis Report assists you.

 Establish validation rules to block any illegal input.

o Many cases need a user friendly validator like the DataTypeCheckValidator to assist the user in correcting their
input. See “Validators from Peter’s Data Entry Suite”.

o Use the PageSecurityValidator on all input types to handle attacks by logging, blocking and redirecting to another
page.

o Use the FieldSecurityValidator on visible web controls when a user friendly validator does not effectively block
attacks or when you want to log attacks.

o Visible web controls that permit free-form text may need to allow HTML tags and SQL statements. They probably
will use a FieldSecurityValidator without any detection of SQL or script injection. These web controls must have
their input neutralized.

 Neutralize input that gets past the blocking. Peter’s Input Security supplies methods on the PageSecurityValidator to
clean up input text. You may also replace any ad-hoc SQL statements with parameterized statements.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 61 of 277
http://www.PeterBlum.com

Follow these Steps on Each Page
These steps ask you to jump around the document using clicks on links. Adobe Reader offers a Previous View
command to return to the link. Look for this in the Adobe Reader (shown v6.0)

1. If not already done, convert the Microsoft validators to Peter’s Data Entry Suite (“DES”) Validators.

 Run Web Application Updater program. Choose the option “Convert native controls to their DES equivalents”.

This step is not required. However, the Security Analysis Report only looks for the Peter’s Data Entry Suite Validators
to determine holes in your security. Conversion is easy as DES supplies a conversion program.

2. ASP.NET 1.1 and higher: Turn off the ValidateRequest property within the <%@Page %> declaration. You will be
replacing it with Peter’s Input Security’s script injection detection.

<%@ Page validateRequest="false" %>

When using ASP.NET 4 or higher, you must also add this node to the <system.web> section of your web.config
file, to enable the ValidateRequest property:

<httpRuntime requestValidationMode="2.0" />

Note: ValidateRequest was introduced in ASP.NET 1.1. It detects HTML tags in all inputs: controls, hidden fields, query
string parameters and cookies. You can leave it enabled if you like it. However, remember that it will not log attacks or
give you more precise control over what to allow within the inputs.

3. Specify character encoding for the page. This is a general purpose technique that helps limit script injection by
preventing unexpected Unicode character patterns that can fool a script injection parser.

a. Determine the character encoding for your page or site.

In Western cultures, the ISO-8859-1 is a recommended choice. It imposes a more restrictive character set than some
others, like UTF-8.

b. Add this <meta> tag to specify the character set on the page like this:

<meta HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">

This tells the browser the encoding to follow.

Note: You can use the Properties Editor to edit the meta tag. View the object called “DOCUMENT” in the
Properties Editor. Edit the “charset” property. ISO-8859-1 is shown as “Western European (ISO)”.

4. Add The PageSecurityValidator to the form.

a. If you are using design mode in Visual Studio or Visual Web Developer, you can add the PageSecurityValidator
from the toolbox to the page in the location you would prefer to see an error message. If you have the
LogAndRespond class set to respond to errors, this validator’s error message will not appear.

b. If you add controls directly to the ASP.NET text of the page, add the PageSecurityValidator in the location you
would prefer to see an error message. If you have the LogAndRespond class set to respond to errors, this validator’s
error message will not appear.

<des:PageSecurityValidator id="PageSecurityValidator1" runat="server" >
</des:PageSecurityValidator>

At this time, you do not need to modify any properties of the PageSecurityValidator. By default, it is set to run the
Security Analysis Report when you request the page from your browser.

http://cyberforge.com/weblog/aniltj/archive/2004/05/03/494.aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 62 of 277
http://www.PeterBlum.com

Example Of Your WebForm So Far
<%@ Page [attributes] %>
<!DOCTYPE [attributes] >
<html runat="server" >
 <head>
 <meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
 </head>
 <body>

 <form id="SampleSecuringAPage" method="post" runat="server">
 <des:PageSecurityValidator id="PageSecurityValidator1" runat="server">
 </des:PageSecurityValidator>

 </form>

 </body>
</html>

5. Add a call to PageSecurityValidator.PrintReport() prior to any Response.Redirect(),
Server.Transfer(),FormsAuthentication.RedirectFromLoginPage(), or Response.End() calls
that followed using or storing data on post back.

The report automatically prints if the page runs its normal Render phase.

[C#]

if (IsPostBack && PeterBlum.DES.Globals.Page.IsValid)
{
 // store or use the data
 PageSecurityValidator1.PrintReport();
 Response.Redirect("NextPage.aspx");
}

[VB]

If (IsPostBack = True) And (PeterBlum.DES.Globals.Page.IsValid = True) Then
 ' store or use the data
 PageSecurityValidator1.PrintReport()
 Response.Redirect("NextPage.aspx")
End If

6. Request the page in your browser to generate the Security Analysis Report. Consider these cases:

 First time the page is opened

 On post back for each unique post back event handler where you use or store the data

 Use common query string parameters

Each time that you run the report, a new file will be created in the Reports folder that you have set up. Each report will
have a unique file name containing the page path, a date/time stamp and “GET” or “POST”.

7. Use the Security Analysis Report to modify your form with validators to detect, log and block attacks. Each report is an
HTML file. Use a browser to view it. See “The Security Analysis Report”.

 For SQL injection, see “Blocking SQL Injection”.

 For script injection, see “Blocking Script Injection”.

 For Hidden Field tampering, see “Blocking Hidden Field Tampering”.

 For query string tampering, see “Blocking Query String Tampering”.

 For Cookie tampering, see “Blocking Cookie Tampering”.

Recommendations for visible fields:

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 63 of 277
http://www.PeterBlum.com

 Use the FieldSecurityValidator on TextBoxes that accept data that is stored as text, such as free-form text, names,
and locations. Its SQLDetectionLevel property gives you control over how strict its parsing is for SQL injection. Its
HTMLTagMode and HTMLTags properties give you control over the HTML tags permitted.

 The FieldSecurityValidator’s SQLCommunicationMode and ScriptCommunicationMode properties let you
control if an attack is logged and how an error is shown. You can have it log everything without reporting any errors
to the user. You can treat severe errors by redirecting to another page while less severe errors show the error
message to gently direct a user to fix a problem.

 The PageSecurityValidator can detect injection problems with all fields not assigned to a FieldSecurityValidator. If
you do not want it to validate a field at all, because it is considered safe, you can:

o Assign a FieldSecurityValidator to it with DetectSQLInjection = false and DetectScriptInjection =
false.

o Call the PageSecurityValidator method ThisControlIsSafe(). This method is optimal. However, do not
use it if you need to detect either SQL or script injection. More details are discussed in the next step.

8. Eliminate any “safe” controls from being validated by the PageSecurityValidator using the ThisControlIsSafe()
method on the PageSecurityValidator.

A “safe” control is different from a neutralized control. Safe is when the field never returns an unsafe value to you. It
internally cleans up. Examples include Button, Calendar, and Checkbox. Neutralized is when the field returns a
potentially unsafe value and you take additional steps to protect yourself from it. Examples include TextBox, ListBox,
and most RichTextBoxes.

There are two cases to consider:

 A control that you consider safe is reporting an attack. Here’s a common case: Button controls should be safe.
Button controls always returns the value from the Button.Text property in Request.Form. If that Button name
contains any SQL keyword defined in <initialsqlkeywords> or <dangeroussqlkeywords>, a attack
will be reported. For example, the SQL keyword “Save” is defined in <initialsqlkeywords>. A button
labeled “Save this Page” will report an attack.

 The SQL Detection Engine or HTML and Script Detection Engine are CPU intensive. This method will prevent
them from being used unnecessarily. The Security Analysis Report will identify the controls it thinks is “safe” in the
Visible Controls section. You can use these controls with the ThisControlIsSafe() method.

Note: The SQL Detection Engine will ignore buttons and other controls whose value in Request.Form is only
letters, digits and underscore. While you can avoid using ThisControlIsSafe() on them, you still improve
performance when using this method.

9. Repeat steps 7 through 9 until you are satisfied that you have set up validators.

10. Look through the source code for any use of Request.QueryString or Request.Cookies that has a name that was not
identified on the Security Analysis Report. Apply the necessary validators within the
PageSecurityValidator.QueryStringRules and PageSecurityValidator.CookieRules collections.

11. When using a FieldSecurityValidator, consider its SQLCommunicationMode and ScriptCommunicationMode
properties. They control logging and reporting errors back to the user. If you allow illegal inputs into your database (after
neutralizing them), you can also record a description of the record with the illegal data into your logs using the
PageSecurityValidator.LogDataInfo() method. This will let you look up those records quickly.

12. Add TextLengthSecurityValidators where appropriate.

 Replace the TextLengthValidators.

o Change the class from PeterBlum.DES.TextLengthValidator to
PeterBlum.DES.Security.TextLengthSecurityValidator.

o Change the ASP.NET tag from <des:TextLengthValidator> to
<des:TextLengthSecurityValidator>

 Add it to any TextBox, HtmlInputText, or HtmlTextArea control that doesn’t have a DataTypeCheckValidator and
has no need to allow lengthy text. Short text limits will help deny more complex SQL injection attacks.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassquerystringtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 64 of 277
http://www.PeterBlum.com

13. Query strings often contain parameters that are associated with a record identity, such as the primary key ID or a name.
If you restrict access to records, you should write code to confirm that the value from the query string is valid for the
current situation.

Note: While this step discusses query string parameters, also consider any cookies or hidden input fields that provide
record identity information.

Suppose that your site sells books to several different types of clients. Each is restricted to a subset of books in your
TB_Books table. Suppose you have a page that shows the details of a book and takes a BookID parameter which is the
primary key ID, like this:

http://www.mybooksite.com/bookdetails.aspx?bookid=1234

You must write code to confirm that the parameter is valid. If it is not, you can use the
LogAndRespond.TrackAttack() method to log this attack and redirect to another page.

Here is an example using the bookid parameter:

[C#]

string vBookID = Request.QueryString["BookID"];
if (ValidateLogic(vBookID))
{
 // create the page
}
else
{ // have LogAndRespond redirect to RestrictedAccess.aspx
 PeterBlum.DES.Security.TrackAttackArgs vArgs =
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(true);
 vArgs.RedirectUrl = "RestrictedAccess.aspx";

 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(
 this.Page,
 new AttackDetails(
 PeterBlum.DES.Security.AttackType.IllegalValue,
 PeterBlum.DES.Security.AttackInputType.QueryString,
 "BookID", vBookID, // parameter name and value
 "Changed BookID parameter", 0), // error descrip. & code
 vArgs);
}

[VB]

Dim vBookID As String = Request.QueryString("BookID")
If ValidateLogic(vBookID) Then
 ' create the page
Else ' have LogAndRespond redirect to RestrictedAccess.aspx
 Dim vArgs As PeterBlum.DES.Security.TrackAttackArgs = _
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(True)
 vArgs.RedirectUrl = "RestrictedAccess.aspx"

 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(_
 Me.Page, _
 new AttackDetails(_
 PeterBlum.DES.Security.AttackType.IllegalValue, _
 PeterBlum.DES.Security.AttackInputType.QueryString, _
 "BookID", vBookID, _ ' parameter name and value
 "Changed BookID parameter", 0), _ ' error descrip. & code
 vArgs)
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 65 of 277
http://www.PeterBlum.com

14. Modify your code to neutralize all attacks that get past the validators.

 For SQL injection, see “Neutralizing SQL Injection”.

 For script injection, see “Neutralizing Script Injection”.

 For Hidden Field, Query String, and Cookies, consider only blocking attacks. Any neutralization solutions are yours
to invent.

15. If the PageSecurityValidator or any FieldSecurityValidators will show error messages, set up the ErrorMessage and
ErrorFormatter properties. If you are using the LogAndRespond class to redirect to another page or throw an
exception, this is unnecessary.

16. The Slow Down Manager is available to block access to a page being repeatedly hacked. Once setup, it only requires
setting the PageSecurityValidator.SlowDownRuleGroup property to activate it on a page. If you define a Slow Down
Rule group name of "", immediately all pages will use it because SlowDownRuleGroup defaults to "".

You can use the Slow Down Manager to monitor login pages for brute force attacks. This requires a small amount of
code. See “Slowing Down Attacks”.

Once a “module” of your site is done, perform module testing to capture Security Analysis Reports showing the use of the
cookies and query string parameters in action. Look for any cookies or parameters that did not get blocked or neutralized. See
“The Security Analysis Report”.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 66 of 277
http://www.PeterBlum.com

The Security Analysis Report
The Security Analysis Report is an essential tool in preparing your defenses on a web form. It is generated so long as it is set
up and the PageSecurityValidator.EnableSecurityReport property is true.

If you have not already done so, configure Peter’s Input Security to run the report. See “Configure for Reporting” in the
Input Security Installation Guide.

Click on any of these topics to jump to them:

 Creating a Report

 Viewing a Report

 Understanding the Report

 Header

 Visible Controls

 Hidden Fields

 Unknown Fields

 Query Strings

 Cookies

 Programmer’s Comments

 Notes

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 67 of 277
http://www.PeterBlum.com

Creating a Report
 Confirm that you have configured Peter’s Input Security to run the report.

There are settings in the web.config file that may disable a report by server name, URL, IP Address, and date. Be sure
that none of them interfere with you running this report. The settings are described in “Configuring for Reports” in the
Input Security Installation Guide.

 A PageSecurityValidator must be on the page and have its EnableSecurityReport property set to true.

Note: If your page redirects to another, the report will not run. It runs in the page’s Render phase, after all controls are
in their final state. You can manually invoke the report to run by calling
PageSecurityValidator.PrintReport() before your redirection code.

 A new report file is automatically created each time the page is generated. Your inputs change as you post back the page.
So test by creating a page and posting it back. Also test pages with their query string parameters and cookies supplied by
other sources that use them.

 Peter’s Input Security never deletes the report files. It’s up to you to maintain the reports folder. Feel free to copy the
report files elsewhere and delete those you don’t want to keep.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 68 of 277
http://www.PeterBlum.com

Viewing a Report
If you have forgotten the location of the reports folder, you have defined it in the <appSettings> section of the
web.config file.

Open the desired report file into your browser.

Each report has a unique name with these three elements, to help you identify them:

 Path of the page. This is everything after your domain name through the aspx extension.

 Date and time stamp in yyyymmdd hhmmss format.

 “GET” or “POST”. “GET” indicates the page is not a result of a post back. “POST” indicates that it is the result of a post
back.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 69 of 277
http://www.PeterBlum.com

Understanding the Report
The Security Analysis Report looks for all four types of inputs: visible fields, hidden fields, query string parameters, and
cookies. It associates them with any validators and gives you a rating of just how secure the input is against SQL injection
and script injection attacks. It makes specific recommendations on how to improve your web form.

Here are the sections of the report.
Click on any of these topics to jump to them:

 Header

 Visible Controls

 Hidden Fields

 Unknown Fields

 Query Strings

 Cookies

 Programmer’s Comments

 Notes

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 70 of 277
http://www.PeterBlum.com

Header
The header contains the following information:

 The path to the page, from Request.Path

 If the page was created as a new page or on post back.

 Date and time created

 Hyperlinks to jump to the remaining sections

 The ID of the PageSecurityValidator and the properties that globally affect visible and hidden fields

Page Input Security Analysis Report
/MyApp/Accounting/EditAccountNumber.aspx

-- Post Back: YES --

6/13/2004 3:53:18 PM

Visible | Hidden | Query String | Cookies | Notes

PageSecurityValidator: PageSecurityValidator1
Default settings for visible and hidden fields: DetectSQLInjection = true; DetectScriptInjection = false

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 71 of 277
http://www.PeterBlum.com

Visible Controls
The Visible Controls section lists each web control that is suspected to handle data input. It detects all Microsoft-supplied
web controls and those from PeterBlum.com. If a third party control is subclassed from the Microsoft-supplied web controls,
it is automatically recognized too. Other third party controls may be recognized if they embed child controls that are
Microsoft controls. You can teach the Security Analysis Report about your third party controls too. See “Improving the
Information about Third Party Controls”.

Each control is shown by its UniqueID (the ID that includes any parent naming containers). This is followed by these
sections:

 Validators – Identifies the validators that are securing this control along with the relevant properties. Any validators that
you identify through the PageSecurityValidator.DescribeValidator() method will appear in blue along
with your suggested ratings.

 SQL Injection – Provides a rating to how secure the control is from SQL injection attacks. It describes exactly what rules
it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Script Injection – Provides a rating to how secure the control is from script injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Recommendations – Strategies to improve the rating or optimize the validation. In some cases, you may have more
security on the control than is necessary to maintain an Excellent rating. Since validation uses up CPU time, you may
consider removing the excess validation.

 Programmer’s Comments – The programmer can add their comments about the security of this control. See the
AddCommentToElement() method in “Methods to Cleanup Input and Notify The Report”.

[SEE NEXT PAGE FOR AN IMAGE OF THIS SECTION]

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 72 of 277
http://www.PeterBlum.com

Some controls are always considered safe because you access their data from a property on the control that cleans up data.
These include the Calendar, ListBox, DropDownList, CheckBox, RadioButton, CheckBoxList, and RadioButtonList, plus

Visible Controls

TextBox1 (System.Web.UI.WebControls.TextBox)

Validators

 FieldSecurityValidator1; DetectSQLInjection = false; DetectScriptInjection = false

 DataTypeCheckValidator1; DataType = Date

SQL Injection
 Rating: Excellent

 DataTypeCheckValidator1 uses a DataType of Date which is too restrictive for SQL injection.

Script Injection
 Rating: Excellent

 DataTypeCheckValidator1 uses a DataType of Date which is too restrictive for Script injection.

Recommendations

 You can improve performance by turning off SQL and Script detection because the other validators require
the text to be safe.

TextBox2 (System.Web.UI.WebControls.TextBox)

Validators

 FieldSecurityValidator2; DetectSQLInjection = false; DetectScriptInjection = false

 RegexValidator1; Expression = ^\d+$

 RegexValidator1: Digits only; suggested SQL rating is Poor.

SQL Injection
 Rating: Excellent (Revised from: Poor)

Programmer indicates that injection text will be neutralized.This revises the rating to Excellent.
Programmer's comment: Passed to stored proc

 RegexValidator1.Expression covers the entire string but DetectSQLInjection=false.

Script Injection
 Rating: Excellent (Revised from: Poor)

Programmer indicates that injection text will be neutralized.This revises the rating to Excellent.
Programmer's comment: PageSecurityValidator.CleanupInput applied HtmlEncode.

 RegexValidator1.Expression covers the entire string but DetectScriptInjection=false.

 Programmer defined a validation rule that raises the rating to Poor.

Recommendations

 Confirm that RegexValidator1.Expression protects against these characters: single quote ('), semicolon (;),
and minus (-).

 Confirm that RegexValidator1 Expression protects against these characters: < > semicolon (;) and period

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 73 of 277
http://www.PeterBlum.com

some third party controls. None of these controls will be itemized on this report. Instead, the report will identify their class
and property to use, like this:

Note: A “safe” control is different from a neutralized control. Safe is when the field never returns an unsafe value to
you. It internally cleans up. Neutralized is when the field returns a potentially unsafe value and you take additional steps
to protect yourself from it. Examples include TextBox, ListBox, and most RichTextBoxes.

When you use the PageSecurityValidator.ThisControlIsSafe() method, the report will contain this section
to document that fact:

The following data input controls were used on this page, and were not shown above.
These controls use data from the Request.Form object. However, each control has already neutralized the
data when accessed through the property specified.
You can optimize this page by calling PageSecurityValidator.ThisControlIsSafe() on each control listed
below, in your Page_Load method.

Control ID Control class Use this property

Calendar1 PeterBlum.PetersDatePackage.CS_Calendar xSelectedDate

CheckBox1 System.Web.UI.WebControls.CheckBox Checked

The following data input controls were recorded as safe by the programmer who used the
PageSecurityValidator.ThisControlIsSafe() method.
They will not be validated by the PageSecurityValidator.
Some of these controls may be listed above.

SaveButton

CancelButton

CheckBox1

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 74 of 277
http://www.PeterBlum.com

Improving the Information about Third Party Controls

The Security Analysis Report recognizes third party controls that are subclassed from Microsoft’s form input controls (like
TextBox and ListBox) or use the ValidationPropertyAttribute. Many third party controls are not implemented either way.
This makes it difficult for the Security Analysis Report to know how to handle them. By default, here are how these third
party controls will behave:

 If they create child controls that use the standard Microsoft controls, you will see those child controls with UniqueIDs
that may not make much sense.

 On post back, all visible and hidden form input fields will create an entry in Request.Form . These will appear in the
“Unknown Fields” section of this report.

The Security Analysis Report allows you to describe third party controls so that they appear without as much confusion. It
also lets you document a property that contains safe, cleaned up data. The diagram above shows two examples. The report
has been preconfigured with the data input controls from Peter’s Data Entry Suite and Peter’s Date Package. Here’s how to
support other third party controls.

1. Open the Global.asax file in an editor. If you use code behind files, open its code behind file.

2. Locate the SetupInputSecurity() method.

3. Create a PeterBlum.DES.Security.ControlBehavior object. This example shows how the IntegerTextBox
from Peter’s Data Entry Suite was added. Details about the parameters follow.

[C#]

PeterBlum.DES.Security.ControlBehavior vCB =
 new PeterBlum.DES.Security.ControlBehavior(
 typeof(PeterBlum.DES.IntegerTextBox), false,
 ControlInputType.AnalyzeData, "IntegerValue");

[VB]

Dim vCB As PeterBlum.DES.Security.ControlBehavior = _
 New PeterBlum.DES.Security.ControlBehavior(_
 GetType(PeterBlum.DES.IntegerTextBox), False, _
 ControlInputType.AnalyzeData, "IntegerValue")

4. You can add an optional comment that appears in the Recommendations section for any control whose ControlInputType
is AnalyzeData. This can help direct the user toward usage concerns such as choosing the right property for accessing
data. This example shows how the Peter’s Date Package DateTextBox control adds a comment.

[C#]

vCB.Comments.Add("The PopupCalendar and MonthYearPicker associated with this
control use hidden fields based on the ID of this DateTextBox. These are safe
because they are not used on post back.");

[VB]

vCB.Comments.Add("The PopupCalendar and MonthYearPicker associated with this
control use hidden fields based on the ID of this DateTextBox. These are safe
because they are not used on post back.")

5. Add the ControlBehavior object to the PeterBlum.DES.Security.SecurityAnalysisReport.ControlBehaviors
collection. This collection is a static/shared property.

[C#]

PeterBlum.DES.Security.SecurityAnalysisReport.ControlBehaviors.Add(vCB);

[VB]

PeterBlum.DES.Security.SecurityAnalysisReport.ControlBehaviors.Add(vCB)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuivalidationpropertyattributeclasstopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 75 of 277
http://www.PeterBlum.com

Definition PeterBlum.DES.Security.ControlBehavior Constructor

[C#]

public ControlBehavior(Type pType, bool pAnalyzeChildren,
 ControlInputType pInputType, string pSafePropertyName)

[VB]

Public Sub New(ByVal pType As Type, ByVal pAnalyzeChildren As Boolean,
 ByVal pInputType As ControlInputType, ByVal pSafePropertyName As String)

Parameters

pType

The type of the control object. For example, typeof(MyControlClass)[C#] or
GetType(MyControlClass) [VB].

pAnalyzeChildren

Some controls have child controls. If you interact with their properties directly, set this to true to have the report
analyze the child controls for attacks. However, most controls provide a property to get and set data that hides the
child controls.

 Set to true when there are child controls and there is no property on the main control that provides cleaned up
data. This will let the report show security issues on the child controls.

 Otherwise set it to false.

pInputType

The type of control this is. Pass one of these values from the enumerated type
PeterBlum.DES.Security.ControlInputType:

 NoData – The control has nothing to post back. Its not a data oriented control. This will remove the control
from the report. Examples of no data controls include: Label and Image.

 SafeData - Has data posted back. Access to that data through its properties is always secure. Examples of
safe data controls include: ListBox, CheckBox, and Calendar.

 AnalyzeData – Has data posted back. The data must be analyzed for security issues. Examples of these
controls include: TextBox, PeterBlum.DES.IntegerTextBox, and PeterBlum.PetersDatePackage.DateTextBox

pSafePropertyName

If the control has a property that safely retrieves data, specify its name here. Examples are SelectedIndex on
ListBox, Checked on CheckBox, and IntegerValue on PeterBlum.DES.IntegerTextBox. This will provide helpful
documentation. This is required when pInputType = SafeData.

You can include multiple properties if you like. Use the format: “property1, property2, or/and property3” . (This text
is not parsed. Its shown directly on the report.)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 76 of 277
http://www.PeterBlum.com

Hidden Fields
The Visible Controls section lists each hidden field that it can detect. This includes:

 HtmlInputHidden controls

 Any field identified within PageSecurityValidator.HiddenFieldRules

Any other hidden field will be found on the Unknown Fields section after a post back.

Each HtmlInputHidden control is shown by its UniqueID (the ID that includes any parent naming containers). Fields
identified in the HiddenFieldRules will show their Name. This is followed by these sections:

 Validators – Identifies the validators that are securing this hidden field along with the relevant properties. The
PageSecurityValidator contains all of the validation rules. Any validation rules that you identify through the
PageSecurityValidator.DescribeValidator() method will appear in blue along with your suggested
ratings.

 SQL Injection – Provides a rating to how secure the hidden field is from SQL injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Script Injection – Provides a rating to how secure the hidden field is from script injection attacks. It describes exactly
what rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Recommendations – Strategies to improve the rating or optimize the validation. In some cases, you may have more
security on the hidden field than is necessary to maintain an Excellent rating. Since validation uses up CPU time, you
may consider removing the excess validation.

 Programmer’s Comments – The programmer can add their comments about the security of this hidden field. See the
AddCommentToElement() method in “Methods to Cleanup Input and Notify The Report”.

[SEE NEXT PAGE FOR AN IMAGE OF THIS SECTION]

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 77 of 277
http://www.PeterBlum.com

Hidden Fields

Hidden1

Validator is from PageSecurityValidator2.HiddenFieldRules[0]

 DetectInjection = false

 DataType = Integer; Maximum = 20

SQL Injection
 Rating: Excellent

 The DataType Integer is too restrictive for SQL injection to work.

Script Injection
 Rating: Excellent

 The DataType Integer is too restrictive for Script injection to work.

Recommendations
 None

Hidden2

Validator is from PageSecurityValidator2.HiddenFieldRules[1]

 DetectInjection = false

 DataType = Ignore

SQL Injection
 Rating: No protection

 None

Script Injection
 Rating: No protection

 None

Recommendations

 If this element's data gets used or stored, confirm that SQL neutralization code is in effect on the data.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 78 of 277
http://www.PeterBlum.com

Unknown Fields
The Unknown Fields section shows entries found in the Request.Form collection that were not matched to entries in the
Visible Controls and Hidden Fields sections. Only the PageSecurityValidator protects these when its DetectSQLInjection
and DetectScriptInjection properties are true. This section only appears on post back as that’s the only time
Request.Form exists.

Sources for these inputs include:

 Hidden field created with Page.RegisterHiddenField(). Move this to the Hidden Fields section by adding an
entry into PageSecurityValidator.HiddenFieldRules to match the name passed into RegisterHiddenField().

 Hidden field defined on the page without runat=server: <input type='hidden' name='ID' >. Move this to the
Hidden Fields section by adding an entry into PageSecurityValidator.HiddenFieldRules to match the value in the
‘name’ attribute.

 A third party web control that posts data back. See “Improving the Information about Third Party Controls”.

Unknown Fields

These are the IDs of fields written to the page but were not found in the controls list of this web form.
They were found on the Request.Form collection of the Page object.
There are several possible sources:

 Hidden field created with Page.RegisterHiddenField()
 Hidden field defined on the page without runat=server: <input type='hidden' name='ID' />
 A third party web control that posts data back.

SQL Injection rating: Excellent; PageSecurityValidator.DetectSQLInjection = true. (SQLDetectionLevel is
always High.)
Script Injection rating: Excellent; PageSecurityValidator.DetectScriptInjection = true.

CustomRadioButton1
AccountID

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 79 of 277
http://www.PeterBlum.com

Query Strings
The Query Strings section identifies query strings both from the rules in PageSecurityValidators.QueryStringRules and the
parameters passed into the page. If you use query string parameters, it is essential to test with all parameters used by the page.

It shows the current query string in the header, followed by a list of query string parameters it finds on the page and in
PageSecurityValidators.QueryStringRules.

Each parameter is shown with its name followed by these sections:

 Validators – Identifies the validator rules that are securing this parameter. These come from entries within
PageSecurityValidators.QueryStringRules. Any validation rules that you identify through the
PageSecurityValidator.DescribeValidator() method will appear in blue along with your suggested
ratings.

 SQL Injection – Provides a rating to how secure the parameter is from SQL injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Script Injection – Provides a rating to how secure the parameter is from script injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Recommendations – Strategies to improve the rating or optimize the validation. In some cases, you may have more
security on the parameter than is necessary to maintain an Excellent rating. Since validation uses up CPU time, you may
consider removing the excess validation.

 Programmer’s Comments – The programmer can add their comments about the security of this parameter. See the
AddCommentToElement() method in “Methods to Cleanup Input and Notify The Report”.

[SEE NEXT PAGE FOR AN IMAGE OF THIS SECTION]

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 80 of 277
http://www.PeterBlum.com

Query String Parameters

Current QueryString: AcctID=3490&Zip=12354-321&Redraw=Yes

PageSecurityValidator1.DetectInjectionSymbolsInQueryString = true; This provides excellent security on
all elements of the query string, even those not listed in PageSecurityValidator.QueryStringRules.

zip
Validator is from PageSecurityValidator1.QueryStringRules[0]

 DetectInjection = false

 DataType = String; Regular expression used: ^\d{5}-\d{4}$

SQL Injection
 Rating: Good

 Does not allow any of these characters: single quote ('), minus (-), and semicolon (;)

 DataType=String uses a regular expression that looks through all characters of the input.

Script Injection
 Rating: Poor

 Does not allow any of these characters: <, >, period (.) and semicolon (;).

 Does not allow any of these characters: < and >.

Recommendations

 If this element's data gets used or stored, confirm that script neutralization code is in effect on the data.

AcctID
Validator is from PageSecurityValidator1.QueryStringRules[1]

 DetectInjection = false

 DataType = Integer; Minimum = 1000; Maximum = 9999999

SQL Injection
 Rating: Excellent

 The DataType Integer is too restrictive for SQL injection to work.

Script Injection
 Rating: Excellent

 The DataType Integer is too restrictive for Script injection to work.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 81 of 277
http://www.PeterBlum.com

Cookies
The Cookies section identifies cookies both from the rules in PageSecurityValidators.CookieRules and the cookies passed
into the page. If you use cookies, it is essential to test with all cookies used by the page.

It shows a list of cookies in PageSecurityValidators.CookieRules.

Each cookie is shown with its name followed by these sections:

 Validators – Identifies the validator rules that are securing this parameter. These come from entries within
PageSecurityValidators. CookieRules. Any validation rules that you identify through the
PageSecurityValidator.DescribeValidator() method will appear in blue along with your suggested
ratings.

 SQL Injection – Provides a rating to how secure the parameter is from SQL injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Script Injection – Provides a rating to how secure the parameter is from script injection attacks. It describes exactly what
rules it uses to determine this rating.

The rating values are “No protection”, “Poor”, “Good” and “Excellent”. Anything less than Excellent needs
improvement or neutralization code.

The programmer can tell the report how they have neutralized the input. This raises the rating to Excellent and provides a
comment from the programmer. See “Methods to Cleanup Input and Notify The Report”.

The programmer can use the PageSecurityValidator.DescribeValidator() method to tell the report that
there is a validator whose rating they judge to be higher than that determined by the report.

 Recommendations – Strategies to improve the rating or optimize the validation. In some cases, you may have more
security on the parameter than is necessary to maintain an Excellent rating. Since validation uses up CPU time, you may
consider removing the excess validation.

 Programmer’s Comments – The programmer can add their comments about the security of this parameter. See the
AddCommentToElement() method in “Methods to Cleanup Input and Notify The Report”.

The list is followed by another, the cookies found in Request.Cookies with no match to
PageSecurityValidators.CookieRules.

[SEE NEXT PAGE FOR AN IMAGE OF THIS SECTION]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclasscookiestopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 82 of 277
http://www.PeterBlum.com

Cookies

The following are from PageSecurityValidator1.CookieRules list:

Greeting

Validator is from PageSecurityValidator1.CookieRules[0]

 DetectInjection = false

 DataType = String; CharacterSet = A-Z, a-z, 0-9, space

SQL Injection
 Rating: Good

 Does not allow any of these characters: single quote ('), minus (-), and semicolon (;)

Script Injection
 Rating: Excellent

 Does not allow any of these characters: <, >, period (.) and semicolon (;).

Recommendations

 If this element's data gets used or stored, confirm that SQL neutralization code is in effect on the data.

LastLogin

Validator is from PageSecurityValidator1.CookieRules[1]

 DetectInjection = false

 DataType = Ignore

SQL Injection
 Rating: No protection

 None

Script Injection
 Rating: No protection

None

Recommendations

 If this element's data gets used or stored, confirm that SQL neutralization code is in effect on the data.

 If this element's data gets used or stored, confirm that script neutralization code is in effect on the data.

These cookies were returned by the browser but have no validation assigned. Confirm that the cookies used
on this page are in PageSecurityValidator1.CookieRules, unless security is not necessary.

NewsFeed Locale Theme

Nickname

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 83 of 277
http://www.PeterBlum.com

Programmer’s Comments
The Programmer’s Comments section displays the comments passed to the report through the
PageSecurityValidator.AddCommentToPage() method. This section is not shown unless there are comments.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 84 of 277
http://www.PeterBlum.com

Notes
The Notes section provides further recommendations.

Notes

 Security is essential on any field that is either stored or passed on to another page. Storage includes
databases, files, and cookies. Passing to another page incudes query strings, cookies, and controls
made available through the Server.Transfer() method.

 Any field, cookie, or query string parameter where security matters must have code applies that
neutralizes SQL and Script injection.

 Always test that PeterBlum.DES.Globals.Page.IsValid is true before storing or passing data to another
page.

 Testing your pages requires that you supply all cookies and querystring parameters used by this page.
This report reflects only the state of cookies and querystring parameters supplied to this page when the
report was run.

 If you have any <frame> or <iframe> tags, be sure their web forms also run this report and you review it.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 85 of 277
http://www.PeterBlum.com

The PageSecurityValidator
Each page should have a PageSecurityValidator (class PeterBlum.DES.Security.PageSecurityValidator). It
performs most of the work:

 Blocking invalid inputs of all types

 Reporting attacks to the LogAndRespond Engine

 Neutralizing some inputs through methods that you call

 Recording your efforts to neutralize inputs within the Security Analysis Report

 Running the Security Analysis Report

Please see “The PageSecurityValidator, An Overview” for a more detailed overview.

Please follow the steps within “Securing A Page” to set up and understand its usage.

Click on any of these topics to jump to them:

 The PageSecurityValidator, An Overview

 PageSecurityValidator Properties

 HiddenFieldRule Objects

 ParameterRule Objects

 CookieRule Objects

 PageSecurityValidator Methods

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 86 of 277
http://www.PeterBlum.com

PageSecurityValidator Properties
The PageSecurityValidator is subclassed from PeterBlum.DES.BaseAnyValidator. It contains the properties shared
by all DES validators.

Click on any of these topics to jump to them:

 Visible And Hidden Field Properties

 Query String Parameter Properties

 Cookie Properties

 Security Analysis Report Properties

 Showing The Error Properties

 Properties From the Base Class That Should Not Be Used

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 87 of 277
http://www.PeterBlum.com

Visible And Hidden Field Properties
 DetectSQLInjection (Boolean) – Use this to detect SQL injection attacks on all entries within the Request.Form

collection. This includes visible and hidden fields from any source:

o Web control

o HTML without a runat=server attribute

o Hidden fields created using Page.RegisterHiddenField()

Visible fields use this unless you assign a FieldSecurityValidator to them. Hidden fields use this unless you identify them
within the HiddenFieldRules property.

When true, detect SQL injection attacks on the Request.Form collection. It defaults to true.

The SQL Detection Level is always set to High. If you need to lower the level or turn it off on individual fields, assign a
FieldSecurityValidator or identify the field within the HiddenFieldRules property. This property has no effect on visible
or hidden fields associated with FieldSecurityValidators or the HiddenFieldRules property.

 DetectScriptInjection (Boolean) – Use this to detect script injection attacks on all entries within the Request.Form
collection. This includes visible and hidden fields from any source:

o Web control

o HTML without a runat=server attribute

o Hidden fields created using Page.RegisterHiddenField()

Visible fields use this unless you assign a FieldSecurityValidator to them. Hidden fields use this unless you identify them
within the HiddenFieldRules property. This property has no effect on visible or hidden fields associated with
FieldSecurityValidators or the HiddenFieldRules property.

When true, detect script injection attacks on the Request.Form collection. It defaults to true.

Use the HTMLTagMode and HTMLTags properties to determine what tags are considered valid.

 HTMLTagMode (enum PeterBlum.DES.Security.HTMLTagMode) – When detecting script injection attacks, this
determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT - Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal - All tags found are illegal.

o AllLegal - All tags found are legal unless they are defined in the <illegaltags> section of the Peter’s
Input Security configuration files.

o LegalExceptTags - All tags are legal except those defined in the HTMLTags property and in the
<illegaltags> section of the Peter’s Input Security configuration files.

o IllegalExceptTags - All tags are illegal except those in the HTMLTags property.

This is the default setting for this property.

This property has no effect on visible or hidden fields associated with FieldSecurityValidators or the HiddenFieldRules
property.

 HTMLTags (string) – When detecting script injection attacks, this can contain a list of HTML tag names. The
HTMLTagMode determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example,
"a;br;img".

Case insensitive testing is performed.

This property has no effect on visible or hidden fields associated with FieldSecurityValidators or the HiddenFieldRules
property.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 88 of 277
http://www.PeterBlum.com

 HiddenFieldRules (PeterBlum.DES.Security.InputElementRules) – A list of rules about hidden fields to validate them
from tampering and injection attacks. Add PeterBlum.DES.Security.HiddenFieldRule objects, one for each
field to validate.

When a hidden field is defined in this list, it no longer follows the DetectSQLInjection and DetectScriptInjection
properties. Instead, each HiddenFieldRule object has its own injection rules.

Always block or neutralize values that are stored (database, cookie, file, etc.) or passed to another system (page, web
service, class, COM object, etc.).

See “HiddenFieldRule Objects” for details on creating these objects and their properties.

Note: Any HTML tag that does not have a runat=server attribute can use this property to customize injection rules and
apply tampering rules. Simply define the value associated with the name= attribute with the HiddenFieldRule.Name
property.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 89 of 277
http://www.PeterBlum.com

Query String Parameter Properties
 QueryStringRules (PeterBlum.DES.Security.InputElementRules) – A list of rules about query string parameters to

validate them from tampering and injection attacks. Add PeterBlum.DES.Security.ParameterRule objects,
one for each parameter to validate.

Not all query string parameters need protection. Some parameters just tell a page how to format or where to redirect.
Always block or neutralize values that are stored (database, cookie, file, etc.) or passed to another system (page, web
service, class, COM object, etc.).

See “ParameterRule Objects” for details on creating these objects and their properties.

 NoChangesToPostBack (Boolean) – Demand that the query string does not change between when the page is first
generated to when it is posted back. (The hacker may have edited the URL within the action= attribute of the <form>
tag.)

While the QueryStringRules collection detects illegal values both when the page is first created and on post back, post
back processing can be optimized (reducing work done by the server) by using this option.

When true, the new page captures information about the query string and stores it for post back. On post back, the
query string is compared to the original information. This will skip processing the QueryStringRules on post back.

Leave it false if your page can change the query string from the client-side on post back.

It defaults to false.

WARNING: This property uses the ViewState on the PageSecurityValidator to preserve information about the query
string. If you do not have the ViewState enabled or cannot protect your ViewState data from undetectable changes, leave
this set to false.

 DetectInjectionSymbolsInQueryString (Boolean) - Look at the entire query string for any of these symbols: <, >,
single quote ('), and "--". Report an attack if any of these symbols are found.

This is another defense against injection attacks and does not require setting up individual QueryStringRules. It can
catch parameters that you missed when setting up security. This is not the strongest defense against attacks. Hackers may
find a way to create injection attacks. This does not defend against tampering.

Do not use it if you need to support any of these symbols anywhere in your query string.

Any parameters defined in the QueryStringRules collection will still be used in addition to this validation rule.

When true, the feature is enabled. It defaults to true.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 90 of 277
http://www.PeterBlum.com

Cookie Properties
 CookieRules (PeterBlum.DES.Security.InputElementRules) – A list of rules about cookies to validate them from

tampering and injection attacks. Add PeterBlum.DES.Security.CookieRule objects, one for each parameter to
validate.

Not all cookies need protection. Some are not used on the current page. Some just tell a page how to format. Always
block or neutralize values that are stored (database, cookie, file, etc.) or passed to another system (page, web service,
class, COM object, etc.).

See “CookieRule Objects” for details on creating these objects and their properties.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 91 of 277
http://www.PeterBlum.com

Security Analysis Report Properties
See “The Security Analysis Report”.

 EnableSecurityReport (Boolean) – Allows this page to generate a Security Analysis Report. The
PeterBlum.DES.Security.SecurityAnalysisReport object must be configured properly to run. See
"Configuring the Report" in the Input Security Installation Guide. Use the ReportIsActive property to learn if your
configuration will run this report or not.

When true, the report will be requested each time the page is requested. It defaults to true.

Set it to false when there is no need for the report, such as security for the page has been approved.

Note: If your page redirects to another, the report will not run. It runs in the page’s Render phase, after all controls are
in their final state. You can manually invoke the report to run by calling
PageSecurityValidator.PrintReport() before your redirection code.

 ReportIsActive (Boolean) – A read-only property that indicates the SecurityAnalysisReport object is set up to
run the report on this page. It looks at all of the <appSettings> keys related to reports in web.config to make this
determination.

Most methods on PageSecurityValidator that interact with the SecurityAnalysisReport object check this
property automatically to avoid running code unnecessarily.

 Report (PeterBlum.DES.Security.SecurityAnalysisReport) – This is the
SecurityAnalysisReport object used by this page. You can only access it programmatically.

In most cases, you will not need to access it as there are methods and properties on PageSecurityValidator to access it.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 92 of 277
http://www.PeterBlum.com

Showing The Error Properties
These properties are from the PeterBlum.DES.BaseAnyValidator base class. They display an error message when
an attack is detected. The LogAndRespond Engine may be set up to redirect to another page or throw an exception instead of
using these properties.

 ErrorMessage, ErrorMessageLookupID, SummaryErrorMessage, SummaryErrorMessageLookupID (String) –
These properties supply error messages at the location of the validator control and within the ValidationSummary
control. Since the PageSecurityValidator handles numerous types of errors, your message here should be all inclusive.
For example, “There was an illegal entry found in an input on this page. Do not embed HTML tags or SQL statements
into your entries.” For visible controls, consider using a FieldSecurityValidator with an error message specific to the
control.

See “Defining the Error Message and Associated Labels” in the Validation User’s Guide.

 ErrorFormatter – Customize the appearance of the error message when shown on the page.

See “ErrorFormatters: Customizing the Appearance of the Error Message” in the Validation User’s Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 93 of 277
http://www.PeterBlum.com

Properties From the Base Class That Should Not Be Used
PageSecurityValidator is subclassed from PeterBlum.DES.BaseAnyValidator. There are a number of properties that
either do not apply or are not recommended to be used. Where possible, the following properties have been hidden from the
Properties Editor. However, they remain available programmatically. Do not use them.

 Group

 Enabler

 NotCondition

 CustomEvalFunctionName

 OverrideClientSideCondition

 EnableClientScript

 EventsThatValidate

 Trim

 ExtraControlsToRunThisAction

 HiliteFields

 ShowRequiredFieldMarker

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 94 of 277
http://www.PeterBlum.com

HiddenFieldRule Objects
The PageSecurityValidator.HiddenFieldRules property is a collection for
PeterBlum.DES.Security.HiddenFieldRule objects. A HiddenFieldRule object identifies one hidden field
(an HTML tag of <input type='hidden'>) and describes the rules for detecting SQL injection, script injection and
tampering.

When a field is associated with a HiddenFieldRule, the properties below apply. The PageSecurityValidator properties for
injection attacks no longer apply.

Note: If you define a visible field that does not use runat=server, you can still validate it for tampering using the
PageSecurityValidator.HiddenFieldRules. Supply the name= attribute of the HTML tag to the HiddenFieldRule.Name
property.

Click on any of these topics to jump to them:

 Properties of the HiddenFieldRule Object

 Identifying the Hidden Field

 SQL Injection And Script Injection

 Tampering Rules

 Adding a HiddenFieldRule Object as ASP.NET Text

 Adding a HiddenFieldRule Object Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 95 of 277
http://www.PeterBlum.com

Properties of the HiddenFieldRule Object
Click on any of these topics to jump to them:

 Identifying the Hidden Field

 SQL Injection And Script Injection

 Tampering Rules

Identifying the Hidden Field

You are required to identify the name of the hidden field through one of these properties.

 Name (String) – The name associated with the hidden field.

o When the field is created with Page.RegisterHiddenField(), use the same value as in the first
parameter of the method, “hiddenFieldName”.

RegisterHiddenField("usethisname", "value")

o When the hidden field is created as HTML, use the value from the name= attribute:

 <input type='hidden' name='usethisname' />

o When the hidden field is created as HTML without runat=server, use the value from the name= attribute:

 <input type='textbox' name='usethisname' />

o When the field is created as an System.Web.HtmlControls.HtmlInputHidden object or as HTML
with a runat=server attribute, use the ControlID or ControlInstance property.

 ControlID (String) – Gets and sets the ID to the control whose value will be evaluated. Use this when using <input
type='hidden' runat=server /> (an HtmlInputHidden control) that is in the same naming container as the
PageSecurityValidator.

Use the control’s ID property, never ClientID or UniqueID. If the control cannot be found in the current or any parent
NamingContainer, an exception is thrown at runtime.

ControlInstance overrides this property when it is not null.

 ControlInstance (System.Web.UI.Control) – An alternative to ControlID. Use it when the control is not in the same or
ancestor naming container. It must be assigned programmatically. When assigned, it overrides any setting in ControlID.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 96 of 277
http://www.PeterBlum.com

SQL Injection And Script Injection

By default, SQL and script injection are both detected with aggressive rules. You may disable injection if one of your
tampering rules provides a solid defense, as determined by the Security Analysis Report or in this documentation. You can
use reduced security if the field needs to support some SQL keywords or HTML tags. Be sure that you neutralize the text that
you do not block.

 DetectInjection (Boolean) – When true, detect SQL and script injection. Detection only occurs when the DataType
property is String or Ignore because other data types will always block these types of attacks.

It defaults to true.

Only set this to false when you must allow HTML tags and SQL statements. You must neutralize the text. See
“Neutralizing SQL Injection” and “Neutralizing Script Injection”.

 SQLDetectionLevel (enum PeterBlum.DES.Security.SQLDetectionLevel) – When looking for SQL injection, this
determines how aggressive the testing is. In most cases, this should be set to High. If you set it to anything else,
anticipate some SQL expressions to get through. Be sure your code includes the proper neutralization code.

This enumerated type has these values:

o High – It blocks text with SQL keywords. Recommended unless you allow text containing SQL keywords. The
list of SQL keywords detected is in the <initialsqlkeywords> and <dangeroussqlkeywords>
sections of the Peter’s Input Security configuration files.

This is the default setting for this property.

o MediumHigh, Medium, MediumLow – It looks for evidence of SQL statements (not just SQL keywords).
After checking for "SELECT", "INSERT", "UPDATE" and "DELETE", it must find one or more supporting
keywords like "FROM" or "WHERE" anywhere from the initial keyword to the end of the text. See “Statement
Detection Algorithm”.

SQL statements are designed to look like English sentences. The challenge is that this sentence looks similar
enough to a SQL statement that it might be blocked: “Select apples from the bin.”

The higher levels demand more terms found in a SQL statement. For example, MediumLow will allow “Select
apples from the bin” while MediumHigh will not. MediumLow will not allow “SELECT FieldName FROM
TableName WHERE x='1' ORDER BY FieldName”.

Consider this for street addresses, short descriptions, labels and other input that isn’t likely to mimic a SQL
statement.

o Low – Only looks for some common hacking patterns that require a single quote. It ignores SQL keywords
unless they are in a specific common hacking pattern.

These common patterns rarely resemble English sentences. So it is good for most free-form text fields, unless
you allow the user to enter SQL statements, such as on a programming oriented website.

All of these levels still look for a few common hacking patterns and will reject any term defined in the
<illegalsqlelements> section of the Peter’s Input Security configuration files. For more, see “What Each SQL
Detection Level Uses To Detect Attacks”.

If you need to allow any kind of SQL statements, disable detection of injection and neutralize the data.

 HTMLTagMode (enum PeterBlum.DES.Security.HTMLTagMode) – When detecting script injection attacks, this
determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT - Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal - All tags found are illegal.

o AllLegal - All tags found are legal unless they are defined in the <illegaltags> section of the Peter’s
Input Security configuration files

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 97 of 277
http://www.PeterBlum.com

o LegalExceptTags - All tags are legal except those defined in the HTMLTags property and in the
<illegaltags> section of the Peter’s Input Security configuration files

o IllegalExceptTags - All tags are illegal except those in the HTMLTags property.

This is the default setting for this property.

 HTMLTags (string) – When detecting script injection attacks, this can contain a list of HTML tag names. The
HTMLTagMode determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example, when
looking for <a>,
 and use “a;br;img”.

Case insensitive testing is performed.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 98 of 277
http://www.PeterBlum.com

Tampering Rules

These properties can detect illegal values and prevent some SQL and script injection attacks. The DataType property
determines which of the remaining properties are used.

 DataType (enum PeterBlum.DES.Security.InputDataType) – You should set the DataType property because it will help
prevent not only tampering but SQL and script injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

This is the default setting for this property.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will
accept. Because its character set is too limited for SQL and script injection, it ignores the DetectInjection
property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when
you have a set of possible values. Use the TypeFormatting property to define the list of strings. It must contain
a semicolon-delimited list of strings like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set
that does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((),
and right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can choose
to set DetectInjection to false. However, be sure to neutralize the strings.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Required (Boolean) – Sometimes you add a hidden field programmatically to a page in a specific situation. The rest of
the time, it is not on the page. For those hidden fields, change this to false. When true, the hidden field must be
supplied back to the server side or an attack is recorded.

 Minimum and Maximum (String) – When the DataType is Integer or Decimal, define a range to limit possible
numeric values. When the DataType is String, define a range to limit the size of the text. When "", these properties
are not used. They default to "".

 TypeFormatting (String) – Assists in validating the various data types. When "", this property is not used. It defaults to
"".

o DataType = String: Assign a regular expression to enforce a particular pattern. While this can limit SQL and
script injection attacks, you must be very careful that your expression is powerful enough if you intend to set
DetectInjection to false.

o DataType = Enumerated: This is required. It must contain a semicolon-delimited list of strings that are valid.
A case insensitive match is performed. For example: “apple;orange;grape”.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 99 of 277
http://www.PeterBlum.com

o DataType = Date: Assign a short date pattern that is compatible with DateTime.ParseExact(). For
example, “dd/MM/yyyy” or “MM-dd-yyyy”. When "", the pattern “yyyy-MM-dd” is used.

 CharacterSetFiltering (Boolean) – When DataType is String and this is true this enables the character set filtering
properties. Those properties appear below. This defaults to false.

Character set filtering can prevent most SQL and script injection attacks when these characters are not permitted: <, >,
single quote ('), minus (-), period (.), left parenthesis ((), and right parenthesis ()).

 PermitLettersUppercase (Boolean) – When character set filtering is enabled and this is true, all uppercase letters are
permitted. This defaults to true.

 PermitLettersLowercase (Boolean) – When character set filtering is enabled and this is true, all lowercase letters are
permitted. This defaults to true.

 PermitDigits (Boolean) – When character set filtering is enabled and this is true, all digit characters are permitted.
This defaults to true.

 PermitSpace (Boolean) – When character set filtering is enabled and this is true, the Space character is permitted.
This defaults to true.

 PermitEnter (Boolean) – When character set filtering is enabled and this is true, the Enter character is permitted. This
defaults to false.

 PermitSQLAttackChars (Boolean) - When character set filtering is enabled and this is true, the following characters
are permitted: single quote ('), minus (-), and semicolon (;). These are characters used by hackers to develop their SQL
injection attacks. Single quote starts a hack in an ad-hoc statement. Minus is used to terminate a hack through this SQL
comment symbol: --. Semicolon separates SQL statements.

If you leave this as false but still want to permit one or more of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitScriptAttackChars (Boolean) - When character set filtering is enabled and this is true, the following
characters are permitted: less than (<) and greater than (>). These are characters used by hackers to develop their script
injection attacks.

If you leave this as false but still want to permit one of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitTheseCharacters (String) – When character set filtering is enabled and this has text, each character listed is part
of the permitted character set. Do not add spaces or other formatting. This is good for adding punctuation or specific
letters and digits. For example, this string permits brackets, plus and minus: “[]+-”.

This defaults to "".

If you set DetectInjection to false, do not permit these characters: <, >, single quote ('), minus (-), period (.), left
parenthesis ((), and right parenthesis ()). Always be sure to neutralize the input.

 BlankValueAllowed (Boolean – When true, the value associated with this field can be blank. It defaults to false.

 OriginalValue (String) – Sometimes hidden fields contain stateful data, similar to the ViewState. This data is not
expected to change between when the page is created and its posted back. Use this property to detect if the hidden field
was changed when it should not be.

Assign it to the same value you assign to the hidden field. If the field is changed on postback, it is a validation error.
Validation does a case sensitive match.

Leave it null/nothing if you do not want to prevent the field from changing.

It defaults to null/nothing (which means its disabled).

The PageSecurityValidator provides the SetOriginalValue() method to simplify updating this property without
locating the HiddenFieldRule object within the HiddenFieldRules collection.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDateTimeClassParseExactTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 100 of 277
http://www.PeterBlum.com

Note: If you edit this property in the PropertiesEditor and later want to remove it, the only way is to delete the
“OriginalValue=” property in the ASP.NET text. If you simply remove the text, it will leave OriginalValue="" which is a
valid value.

Example 1

The Hidden field with the name “Hidden1” will be assigned the value “100”.

[C#]

Page.RegisterHiddenField("Hidden1", "100");
PageSecurityValidator1.SetOriginalValue("Hidden1", "100");

[VB]

Page.RegisterHiddenField("Hidden1", "100")
PageSecurityValidator1.SetOriginalValue("Hidden1", "100")

Example 2

The HtmlInputHidden control with the ID “Hidden1” will be assigned the value “100”.

[C#]

Hidden1.Value = "100";
PageSecurityValidator1.SetOriginalValue(Hidden1);

[VB]

Hidden1.Value = "100"
PageSecurityValidator1.SetOriginalValue(Hidden1)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 101 of 277
http://www.PeterBlum.com

Adding a HiddenFieldRule Object as ASP.NET Text
The ASP.NET text of the PageSecurityValidator will nest each HiddenFieldRule object within the
<HiddenFieldRules> group like this:

<des:PageSecurityValidator runat="server" [properties] >
 <HiddenFieldRules>
 <des:HiddenFieldRule Name="RecordID" DataType="Integer" Minimum="10" />
 <des:HiddenFieldRule Name="LastName" DataType="String"
 CharacterSetFiltering="true" PermitDigits="false" />
 </HiddenFieldRules>
</des:PageSecurityValidator>

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 102 of 277
http://www.PeterBlum.com

Adding a HiddenFieldRule Object Programmatically
Here are the steps:

1. Create an instance of the PeterBlum.DES.Security.HiddenFieldRule class. There are several constructors
available, shown below.

2. Assign values to any desired properties.

3. Add the object to the PageSecurityValidator.HiddenFieldRules collection through its Add() method.

An example is shown with each constructor.

Constructor with no parameters

Use this constructor when you will assign all properties. You must assign the Name, ControlID or ControlInstance
property for it to be a valid HiddenFieldRule object.

[C#]

public HiddenFieldRule()

[VB]

Public Sub New()

Example

[C#]

PeterBlum.DES.Security.HiddenFieldRule vRule =
 new PeterBlum.DES.Security.HiddenFieldRule();
vRule.Name = "Hidden1"; // requires Name, ControlID or ControlInstance assigned
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer;
PageSecurityValidator.HiddenFieldRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.HiddenFieldRule = _
 New PeterBlum.DES.Security.HiddenFieldRule()
vRule.Name = "Hidden1" ' requires Name, ControlID or ControlInstance assigned
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.HiddenFieldRules.Add(vRule)

Constructor with only the Name property

Use this constructor when you want to assign the Name property within the constructor and other properties after.

[C#]

public HiddenFieldRule(string pName)

[VB]

Public Sub New(ByVal pName As String)

Example

[C#]

PeterBlum.DES.Security.HiddenFieldRule vRule =
 new PeterBlum.DES.Security.HiddenFieldRule("Hidden1");
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer;
PageSecurityValidator.HiddenFieldRules.Add(vRule);

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 103 of 277
http://www.PeterBlum.com

[VB]

Dim vRule As PeterBlum.DES.Security.HiddenFieldRule = _
 New PeterBlum.DES.Security.HiddenFieldRule("Hidden1")
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.HiddenFieldRules.Add(vRule)

Constructor with the Name property and all supporting properties

Use this constructor when you want to assign all properties and you create the hidden field using
Page.RegisterHiddenField() or <input type='hidden' /> without runat=server.

[C#]

public HiddenFieldRule(string pName,
 PeterBlum.DES.Security.InputDataType pDataType,
 string pTypeFormatting,
 string pMinimum,
 string pMaximum,
 bool pBlankValueAllowed,
 bool pDetectInjection,
 PeterBlum.DES.Security.SQLDetectionLevel pSQLDetectionLevel,
 PeterBlum.DES.Security.HTMLTagMode pHTMLTagMode,
 string pHTMLTags,
 bool pCharacterSetFiltering,
 bool pPermitLettersUppercase,
 bool pPermitLettersLowercase,
 bool pPermitDigits,
 bool pPermitSpace,
 bool pPermitEnter,
 bool pPermitSQLAttackChars,
 bool pPermitScriptAttackChars,
 string pPermitTheseCharacters)

[VB]

Public Sub New(ByVal pName As String,
 ByVal pDataType PeterBlum.DES.Security.InputDataType,
 ByVal pTypeFormatting As String,
 ByVal pMinimum As String,
 ByVal pMaximum As String,
 ByVal pBlankValueAllowed As Boolean,
 ByVal pDetectInjection As Boolean,
 ByVal pSQLDetectionLevel As PeterBlum.DES.Security.SQLDetectionLevel,
 ByVal pHTMLTagMode As PeterBlum.DES.Security.HTMLTagMode,
 ByVal pHTMLTags As String,
 ByVal pCharacterSetFiltering As Boolean,
 ByVal pPermitLettersUppercase As Boolean,
 ByVal pPermitLettersLowercase As Boolean,
 ByVal pPermitDigits As Boolean,
 ByVal pPermitSpace As Boolean,
 ByVal pPermitEnter As Boolean,
 ByVal pPermitSQLAttackChars As Boolean,
 ByVal pPermitScriptAttackChars As Boolean,
 ByVal pPermitTheseCharacters As String)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 104 of 277
http://www.PeterBlum.com

Example

[C#]

PeterBlum.DES.Security.HiddenFieldRule vRule =
 new PeterBlum.DES.Security.HiddenFieldRule("Hidden1",
 PeterBlum.DES.Security.InputDataType.Integer,
 "", "", "", true, false,
 PeterBlum.DES.Security.SQLDetectionLevel.High,
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal,
 "", true, true, true, true, true, false, false, false, "");
PageSecurityValidator.HiddenFieldRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.HiddenFieldRule = _
 New PeterBlum.DES.Security.HiddenFieldRule("Hidden1", _
 PeterBlum.DES.Security.InputDataType.Integer, _
 "", "", "", True, False, _
 PeterBlum.DES.Security.SQLDetectionLevel.High, _
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal, _
 "", True, True, True, True, True, False, False, False, "")
PageSecurityValidator.HiddenFieldRules.Add(vRule)

Constructor for HtmlInputHidden Controls and all supporting properties

Use this constructor when you want to assign all properties and you create the hidden field using <input
type='hidden' runat=server />.

[C#]

public HiddenFieldRule(System.Web.UI.Control pControlInstance,
 PeterBlum.DES.Security.InputDataType pDataType,
 string pTypeFormatting,
 string pMinimum,
 string pMaximum,
 bool pBlankValueAllowed,
 bool pDetectInjection,
 PeterBlum.DES.Security.SQLDetectionLevel pSQLDetectionLevel,
 PeterBlum.DES.Security.HTMLTagMode pHTMLTagMode,
 string pHTMLTags,
 bool pCharacterSetFiltering,
 bool pPermitLettersUppercase,
 bool pPermitLettersLowercase,
 bool pPermitDigits,
 bool pPermitSpace,
 bool pPermitEnter,
 bool pPermitSQLAttackChars,
 bool pPermitScriptAttackChars,
 string pPermitTheseCharacters)

[VB]

Public Sub New(ByVal pControlInstance As System.Web.UI.Control,

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 105 of 277
http://www.PeterBlum.com

 ByVal pDataType PeterBlum.DES.Security.InputDataType,
 ByVal pTypeFormatting As String,
 ByVal pMinimum As String,
 ByVal pMaximum As String,
 ByVal pBlankValueAllowed As Boolean,
 ByVal pDetectInjection As Boolean,
 ByVal pSQLDetectionLevel As PeterBlum.DES.Security.SQLDetectionLevel,
 ByVal pHTMLTagMode As PeterBlum.DES.Security.HTMLTagMode,
 ByVal pHTMLTags As String,
 ByVal pCharacterSetFiltering As Boolean,
 ByVal pPermitLettersUppercase As Boolean,
 ByVal pPermitLettersLowercase As Boolean,
 ByVal pPermitDigits As Boolean,
 ByVal pPermitSpace As Boolean,
 ByVal pPermitEnter As Boolean,
 ByVal pPermitSQLAttackChars As Boolean,
 ByVal pPermitScriptAttackChars As Boolean,
 ByVal pPermitTheseCharacters As String)

Example

[C#]

PeterBlum.DES.Security.HiddenFieldRule vRule =
 new PeterBlum.DES.Security.HiddenFieldRule(Hidden1,
 PeterBlum.DES.Security.InputDataType.Integer,
 "", "", "", true, false,
 PeterBlum.DES.Security.SQLDetectionLevel.High,
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal,
 "", true, true, true, true, true, false, false, false, "");
PageSecurityValidator.HiddenFieldRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.HiddenFieldRule = _
 New PeterBlum.DES.Security.HiddenFieldRule(Hidden1, _
 PeterBlum.DES.Security.InputDataType.Integer, _
 "", "", "", True, False, _
 PeterBlum.DES.Security.SQLDetectionLevel.High, _
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal, _
 "", True, True, True, True, True, True, True, True, "")
PageSecurityValidator.HiddenFieldRules.Add(vRule)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 106 of 277
http://www.PeterBlum.com

ParameterRule Objects
The PageSecurityValidator.QueryStringRules property is a collection for
PeterBlum.DES.Security.ParameterRule objects. A ParameterRule object identifies one query string
parameter and describes the rules for detecting SQL injection, script injection and tampering.

Click on any of these topics to jump to them:

 Properties of the ParameterRule Object

 Identifying the Query String Parameter

 SQL Injection And Script Injection

 Tampering Rules

 Adding a ParameterRule Object as ASP.NET Text

 Adding a ParameterRule Object Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 107 of 277
http://www.PeterBlum.com

Properties of the ParameterRule Object
Click on any of these topics to jump to them:

 Identifying the Query String Parameter

 SQL Injection And Script Injection

 Tampering Rules

Identifying the Query String Parameter

 Name (String) – The name associated with the query string parameter. For example, if the parameter is “AcctID=123”,
the name is “AcctID”. This property uses a case insensitive match to the parameter name. A value is required.

SQL Injection And Script Injection

By default, SQL and script injection are both detected with aggressive rules. You may disable injection if one of your
tampering rules provides a solid defense, as determined by the Security Analysis Report or as described in this
documentation. You can use reduced security if the field needs to support some SQL keywords or HTML tags. Be sure that
you neutralize the text that you do not block.

 DetectInjection (Boolean) – When true, detect SQL and script injection. Detection only occurs when the DataType
property is String or Ignore because other data types will always block these types of attacks.

It defaults to true.

Only set this to false when you must allow HTML tags and SQL statements. You must neutralize the text. See
“Neutralizing SQL Injection” and “Neutralizing Script Injection”.

 SQLDetectionLevel (enum PeterBlum.DES.Security.SQLDetectionLevel) – When looking for SQL injection, this
determines how aggressive the testing is. In most cases, this should be set to High. If you set it to anything else,
anticipate some SQL expressions to get through. Be sure your code includes the proper neutralization code.

This enumerated type has these values:

o High – It blocks text with SQL keywords. Recommended unless you allow text containing SQL keywords. The
list of SQL keywords detected is in the <initialsqlkeywords> and <dangeroussqlkeywords>
sections of the Peter’s Input Security configuration files.

This is the default setting for this property.

o MediumHigh, Medium, MediumLow – It looks for evidence of SQL statements (not just SQL keywords).
After checking for "SELECT", "INSERT", "UPDATE" and "DELETE", it must find one or more supporting
keywords like "FROM" or "WHERE" anywhere from the initial keyword to the end of the text. See “Statement
Detection Algorithm”.

SQL statements are designed to look like English sentences. The challenge is that this sentence looks similar
enough to a SQL statement that it might be blocked: “Select apples from the bin.”

The higher levels demand more terms found in a SQL statement. For example, MediumLow will allow “Select
apples from the bin” while MediumHigh will not. MediumLow will not allow “SELECT FieldName FROM
TableName WHERE x='1' ORDER BY FieldName”.

Consider this for street addresses, short descriptions, labels and other input that isn’t likely to mimic a SQL
statement.

o Low – Only looks for some common hacking patterns that require a single quote. It ignores SQL keywords
unless they are in a specific common hacking pattern.

These common patterns rarely resemble English sentences. So it is good for most free-form text fields, unless
you allow the user to enter SQL statements, such as on a programming oriented website.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 108 of 277
http://www.PeterBlum.com

All of these levels still look for a few common hacking patterns and will reject any term defined in the
<illegalsqlelements> section of the Peter’s Input Security configuration files. For more, see “What Each SQL
Detection Level Uses To Detect Attacks”.

If you need to allow any kind of SQL statements, disable detection of injection and neutralize the data.

 HTMLTagMode (enum PeterBlum.DES.Security.HTMLTagMode) – When detecting script injection attacks, this
determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT - Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal - All tags found are illegal.

o AllLegal - All tags found are legal unless they are defined in the <illegaltags> section of the Peter’s
Input Security configuration files

o LegalExceptTags - All tags are legal except those defined in the HTMLTags property and in the
<illegaltags> section of the Peter’s Input Security configuration files

o IllegalExceptTags - All tags are illegal except those in the HTMLTags property.

This is the default setting for this property.

 HTMLTags (string) – When detecting script injection attacks, this can contain a list of HTML tag names. The
HTMLTagMode determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example, when
looking for <a>,
 and use “a;br;img”.

Case insensitive testing is performed.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 109 of 277
http://www.PeterBlum.com

Tampering Rules

These properties can detect illegal values and prevent some SQL and script injection attacks. The DataType property
determines which of the remaining properties are used.

 DataType (enum PeterBlum.DES.Security.InputDataType) – You should set the DataType property because it will help
prevent not only tampering but SQL and script injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

This is the default setting for this property.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will
accept. Because its character set is too limited for SQL and script injection, it ignores the DetectInjection
property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when
you have a set of possible values. Use the TypeFormatting property to define the list of strings. It must contain
a semicolon-delimited list of strings like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set
that does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((),
and right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can choose
to set DetectInjection to false. However, be sure to neutralize the strings.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Minimum and Maximum (String) – When the DataType is Integer or Decimal, define a range to limit possible
numeric values. When the DataType is String, define a range to limit the size of the text. When "", these properties
are not used. They default to "".

 TypeFormatting (String) – Assists in validating the various data types. When "", this property is not used. It defaults to
"".

o DataType = String: Assign a regular expression to enforce a particular pattern. While this can limit SQL and
script injection attacks, you must be very careful that your expression is powerful enough if you intend to set
DetectInjection to false.

o DataType = Enumerated: This is required. It must contain a semicolon-delimited list of strings that are valid.
A case insensitive match is performed. For example: “apple;orange;grape”.

o DataType = Date: Assign a short date pattern that is compatible with DateTime.ParseExact(). For
example, “dd/MM/yyyy” or “MM-dd-yyyy”. When "", the pattern “yyyy-MM-dd” is used.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDateTimeClassParseExactTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 110 of 277
http://www.PeterBlum.com

 CharacterSetFiltering (Boolean) – When DataType is String and this is true this enables the character set filtering
properties. Those properties appear below. This defaults to false.

Character set filtering can prevent most SQL and script injection attacks when these characters are not permitted: <, >,
single quote ('), minus (-), period (.), left parenthesis ((), and right parenthesis ()).

 PermitLettersUppercase (Boolean) – When character set filtering is enabled and this is true, all uppercase letters are
permitted. This defaults to true.

 PermitLettersLowercase (Boolean) – When character set filtering is enabled and this is true, all lowercase letters are
permitted. This defaults to true.

 PermitDigits (Boolean) – When character set filtering is enabled and this is true, all digit characters are permitted.
This defaults to true.

 PermitSpace (Boolean) – When character set filtering is enabled and this is true, the Space character is permitted.
This defaults to true.

 PermitEnter (Boolean) – When character set filtering is enabled and this is true, the Enter character is permitted. This
defaults to false.

 PermitSQLAttackChars (Boolean) - When character set filtering is enabled and this is true, the following characters
are permitted: single quote ('), minus (-), and semicolon (;). These are characters used by hackers to develop their SQL
injection attacks. Single quote starts a hack in an ad-hoc statement. Minus is used to terminate a hack through this SQL
comment symbol: --. Semicolon separates SQL statements.

If you leave this as false but still want to permit one or more of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitScriptAttackChars (Boolean) - When character set filtering is enabled and this is true, the following
characters are permitted: less than (<) and greater than (>). These are characters used by hackers to develop their script
injection attacks.

If you leave this as false but still want to permit one of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitTheseCharacters (String) – When character set filtering is enabled and this has text, each character listed is part
of the permitted character set. Do not add spaces or other formatting. This is good for adding punctuation or specific
letters and digits. For example, this string permits brackets, plus and minus: “[]+-”.

This defaults to "".

If you set DetectInjection to false, do not permit these characters: <, >, single quote ('), minus (-), period (.), left
parenthesis ((), and right parenthesis ()). Always be sure to neutralize the input.

 BlankValueAllowed (Boolean – When true, the value associated with this field can be blank. It defaults to false.

 Required (Boolean) – When true, this name must be found in the query string. It defaults to false.

 OtherNamesRequired (String) – Use this when there are other parameter names that must be in the query string when
this name is in the query string.

This should be a semicolon-delimited string of names of other parameters. For example: name1;name2. If any of the
names defined are missing, it is an error.

When "", this feature is disabled. It defaults to "".

 OtherNamesIllegal (String) – Use this when there are other parameter names that must not be in the query string when
this name is in the query string.

This should be a semicolon-delimited string of names of other parameters. For example: name1;name2. If any of the
names defined are found, it is an error.

When "", this feature is disabled. It defaults to "".

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 111 of 277
http://www.PeterBlum.com

Adding a ParameterRule Object as ASP.NET Text
The ASP.NET text of the PageSecurityValidator will nest each ParameterRule object within the
<QueryStringRules> group like this:

<des:PageSecurityValidator runat="server" [properties] >
 <QueryStringRules>
 <des:ParameterRule Name="RecordID" DataType="Integer" Minimum="10" />
 <des:ParameterRule Name="LastName" DataType="String"
 CharacterSetFiltering="true" PermitDigits="false" />
 </QueryStringRules>
</des:PageSecurityValidator>

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 112 of 277
http://www.PeterBlum.com

Adding a ParameterRule Object Programmatically
Here are the steps:

1. Create an instance of the PeterBlum.DES.Security.ParameterRule class. There are several constructors
available, shown below.

2. Assign values to any desired properties.

3. Add the object to the PageSecurityValidator.QueryStringRules collection through its Add() method.

An example is shown with each constructor.

Constructor with no parameters

Use this constructor when you will assign all properties. You must assign the Name property for it to be a valid
ParameterRule object.

[C#]

public ParameterRule()

[VB]

Public Sub New()

Example

[C#]

PeterBlum.DES.Security.ParameterRule vRule =
 new PeterBlum.DES.Security.ParameterRule();
vRule.Name = "AcctID";
PageSecurityValidator.QueryStringRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.ParameterRule = _
 New PeterBlum.DES.Security.ParameterRule()
vRule.Name = "AcctID"
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.QueryStringRules.Add(vRule)

Constructor with only the Name property

Use this constructor when you want to assign the Name property within the constructor and other properties after.

[C#]

public ParameterRule(string pName)

[VB]

Public Sub New(ByVal pName As String)

Example

[C#]

PeterBlum.DES.Security.ParameterRule vRule =
 new PeterBlum.DES.Security.ParameterRule("AcctID");
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer;
PageSecurityValidator.QueryStringRules.Add(vRule);

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 113 of 277
http://www.PeterBlum.com

[VB]

Dim vRule As PeterBlum.DES.Security.ParameterRule = _
 New PeterBlum.DES.Security.ParameterRule("AcctID")
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.QueryStringRules.Add(vRule)

Constructor with all properties

 [C#]

public ParameterRule(string pName,
 PeterBlum.DES.Security.InputDataType pDataType,
 string pTypeFormatting,
 string pMinimum,
 string pMaximum,
 bool pBlankValueAllowed,
 bool pDetectInjection,
 PeterBlum.DES.Security.SQLDetectionLevel pSQLDetectionLevel,
 PeterBlum.DES.Security.HTMLTagMode pHTMLTagMode,
 string pHTMLTags,
 bool pCharacterSetFiltering,
 bool pPermitLettersUppercase,
 bool pPermitLettersLowercase,
 bool pPermitDigits,
 bool pPermitSpace,
 bool pPermitEnter,
 bool pPermitSQLAttackChars,
 bool pPermitScriptAttackChars,
 string pPermitTheseCharacters,
 bool pRequired,
 string pOtherNamesRequired,
 string pOtherNamesIllegal)

[VB]

Public Sub New(ByVal pName As String,
 ByVal pDataType PeterBlum.DES.Security.InputDataType,
 ByVal pTypeFormatting As String,
 ByVal pMinimum As String,
 ByVal pMaximum As String,
 ByVal pBlankValueAllowed As Boolean,
 ByVal pDetectInjection As Boolean,
 ByVal pSQLDetectionLevel As PeterBlum.DES.Security.SQLDetectionLevel,
 ByVal pHTMLTagMode As PeterBlum.DES.Security.HTMLTagMode,
 ByVal pHTMLTags As String,
 ByVal pCharacterSetFiltering As Boolean,
 ByVal pPermitLettersUppercase As Boolean,
 ByVal pPermitLettersLowercase As Boolean,
 ByVal pPermitDigits As Boolean,
 ByVal pPermitSpace As Boolean,
 ByVal pPermitEnter As Boolean,
 ByVal pPermitSQLAttackChars As Boolean,
 ByVal pPermitScriptAttackChars As Boolean,
 ByVal pPermitTheseCharacters As String,
 ByVal pRequired As Boolean,
 ByVal pOtherNamesRequired As String,
 ByVal pOtherNamesIllegal As String)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 114 of 277
http://www.PeterBlum.com

Example

[C#]

PeterBlum.DES.Security.ParameterRule vRule =
 new PeterBlum.DES.Security.ParameterRule("AcctID",
 PeterBlum.DES.Security.InputDataType.Integer,
 "", "", "", true, false,
 PeterBlum.DES.Security.SQLDetectionLevel.High,
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal,
 "", true, true, true, true, true, false, false, false, "",
 true, "", "");
PageSecurityValidator.QueryStringRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.ParameterRule = _
 New PeterBlum.DES.Security.ParameterRule("AcctID", _
 PeterBlum.DES.Security.InputDataType.Integer, _
 "", "", "", True, False, _
 PeterBlum.DES.Security.SQLDetectionLevel.High, _
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal, _
 "", True, True, True, True, True, False, False, False, "", _
 True, "", "")
PageSecurityValidator.QueryStringRules.Add(vRule)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 115 of 277
http://www.PeterBlum.com

CookieRule Objects
The PageSecurityValidator.CookieRules property is a collection for PeterBlum.DES.Security.CookieRule
objects. A CookieRule object identifies one cookie and describes the rules for detecting SQL injection, script injection and
tampering.

When you set up a cookie within ASP.NET, the System.Web.HttpCookie class lets you define a single value
(HttpCookie.Value) or a list of values (HttpCookie.Values). The CookieRule object looks at data in both. When using
the HttpCookie.Values collection, all entries within the collection must share the same tampering rules. For example, if you
set the DataType property to Integer, all entries must be integers. You should leave DetectInjection set to true when
using HttpCookie.Values because the CookieRule will look for injection attacks within the full string that makes up those
values as seen in HttpCookie.Value property.

Click on any of these topics to jump to them:

 Properties of the CookieRule Object

 Identifying the Cookie

 SQL Injection And Script Injection

 Tampering Rules

 Adding a CookieRule Object as ASP.NET Text

 Adding a CookieRule Object Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 116 of 277
http://www.PeterBlum.com

Properties of the CookieRule Object
Click on any of these topics to jump to them:

 Identifying the Cookie

 SQL Injection And Script Injection

 Tampering Rules

Identifying the Cookie

 Name (String) – The name associated with the cookie. This is the same value as the HttpCookie.Name property. This
property uses a case insensitive match to the parameter name. A value is required.

SQL Injection And Script Injection

By default, SQL and script injection are both detected with aggressive rules. You may disable injection if one of your
Tampering rules provides a solid defense, as determined by the Security Analysis Report. You can use reduced security if the
field needs to support some SQL keywords or HTML tags. Be sure that you neutralize the text that you do not block.

 DetectInjection (Boolean) – When true, detect SQL and script injection. Detection only occurs when the DataType
property is String or Ignore because other data types will always block these types of attacks.

It defaults to true.

Only set this to false when you must allow HTML tags and SQL statements. You must neutralize the text. See
“Neutralizing SQL Injection” and “Neutralizing Script Injection”.

You should leave DetectInjection set to true when using HttpCookie.Values because the CookieRule will look for
injection attacks within the full string that makes up those values as seen in HttpCookie.Value property.

 SQLDetectionLevel (enum PeterBlum.DES.Security.SQLDetectionLevel) – When looking for SQL injection, this
determines how aggressive the testing is. In most cases, this should be set to High. If you set it to anything else,
anticipate some SQL expressions to get through. Be sure your code includes the proper neutralization code.

This enumerated type has these values:

o High – It blocks text with SQL keywords. Recommended unless you allow text containing SQL keywords. The
list of SQL keywords detected is in the <initialsqlkeywords> and <dangeroussqlkeywords>
sections of the Peter’s Input Security configuration files.

This is the default setting for this property.

o MediumHigh, Medium, MediumLow – It looks for evidence of SQL statements (not just SQL keywords).
After checking for "SELECT", "INSERT", "UPDATE" and "DELETE", it must find one or more supporting
keywords like "FROM" or "WHERE" anywhere from the initial keyword to the end of the text. See “Statement
Detection Algorithm”.

SQL statements are designed to look like English sentences. The challenge is that this sentence looks similar
enough to a SQL statement that it might be blocked: “Select apples from the bin.”

The higher levels demand more terms found in a SQL statement. For example, MediumLow will allow “Select
apples from the bin” while MediumHigh will not. MediumLow will not allow “SELECT FieldName FROM
TableName WHERE x='1' ORDER BY FieldName”.

Consider this for street addresses, short descriptions, labels and other input that isn’t likely to mimic a SQL
statement.

o Low – Only looks for some common hacking patterns that require a single quote. It ignores SQL keywords
unless they are in a specific common hacking pattern.

These common patterns rarely resemble English sentences. So it is good for most free-form text fields, unless
you allow the user to enter SQL statements, such as on a programming oriented website.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 117 of 277
http://www.PeterBlum.com

All of these levels still look for a few common hacking patterns and will reject any term defined in the
<illegalsqlelements> section of the Peter’s Input Security configuration files. For more, see “What Each SQL
Detection Level Uses To Detect Attacks”.

If you need to allow any kind of SQL statements, disable detection of injection and neutralize the data.

 HTMLTagMode (enum PeterBlum.DES.Security.HTMLTagMode) – When detecting script injection attacks, this
determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT - Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal - All tags found are illegal.

o AllLegal - All tags found are legal unless they are defined in the <illegaltags> section of the Peter’s
Input Security configuration files.

o LegalExceptTags - All tags are legal except those defined in the HTMLTags property and in the
<illegaltags> section of the Peter’s Input Security configuration files

o IllegalExceptTags - All tags are illegal except those in the HTMLTags property.

This is the default setting for this property.

 HTMLTags (string) – When detecting script injection attacks, this can contain a list of HTML tag names. The
HTMLTagMode determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example, when
looking for <a>,
 and use “a;br;img”.

Case insensitive testing is performed.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 118 of 277
http://www.PeterBlum.com

Tampering Rules

These properties can detect illegal values and prevent some SQL and script injection attacks. The DataType property
determines which of the remaining properties are used.

 DataType (enum PeterBlum.DES.Security.InputDataType) – You should set the DataType property because it will help
prevent not only tampering but SQL and script injection attacks. Here are the data types offered:

o Ignore – This can only check for SQL and script injection attacks. It has no defenses against tampering. You
must set DetectInjection to true.

This is the default setting for this property.

o Integer – Requires text to represent a valid integer. Because its character set is too limited for SQL and script
injection, it ignores the DetectInjection property.

You can provide a numeric range using the Minimum and Maximum properties.

o Decimal – Requires text to represent a valid decimal value in a form that Convert.ToDouble() will
accept. Because its character set is too limited for SQL and script injection, it ignores the DetectInjection
property.

You can provide a numeric range using the Minimum and Maximum properties.

o Date – Requires text to represent a date in a short date format. It defaults to the format yyyy-MM-dd. You can
provide another format within the TypeFormatting property. Because its character set is too limited for SQL
and script injection, it ignores the DetectInjection property.

o Enumerated – Demands the text match one of a list of strings using a case insensitive match. Use this when
you have a set of possible values. Use the TypeFormatting property to define the list of strings. It must contain
a semicolon-delimited list of strings like this: print;save;open. The DetectInjection property is ignored.

o String – Allows any text. The DetectInjection property is recommended unless you define a character set
that does not permit any of these characters: <, >, single quote ('), minus (-), period (.), left parenthesis ((),
and right parenthesis ()).

Enable character set testing with the CharacterSetFiltering property. Define the character set using the
PermitLettersUppercase, PermitLettersLowercase, PermitDigits, PermitSpace, PermitEnter,
PermitSQLAttackChars, PermitScriptAttackChars, and PermitTheseCharacters properties. So long as
PermitTheseCharacters property does not contain any of the previously mentioned characters, you can choose
to set DetectInjection to false. However, be sure to neutralize the strings.

You can apply a regular expression against the text within the TypeFormatting property. If your text has a
pattern that can be defined with a regular expression, this is strongly recommended.

You can establish a minimum and maximum text length within the Minimum and Maximum properties.

 Minimum and Maximum (String) – When the DataType is Integer or Decimal, define a range to limit possible
numeric values. When the DataType is String, define a range to limit the size of the text. When "", these properties
are not used. They default to "".

 TypeFormatting (String) – Assists in validating the various data types. When "", this property is not used. It defaults to
"".

o DataType = String: Assign a regular expression to enforce a particular pattern. While this can limit SQL and
script injection attacks, you must be very careful that your expression is powerful enough if you intend to set
DetectInjection to false.

o DataType = Enumerated: This is required. It must contain a semicolon-delimited list of strings that are valid.
A case insensitive match is performed. For example: “apple;orange;grape”.

o DataType = Date: Assign a short date pattern that is compatible with DateTime.ParseExact(). For
example, “dd/MM/yyyy” or “MM-dd-yyyy”. When "", the pattern “yyyy-MM-dd” is used.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDateTimeClassParseExactTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 119 of 277
http://www.PeterBlum.com

 CharacterSetFiltering (Boolean) – When DataType is String and this is true this enables the character set filtering
properties. Those properties appear below. This defaults to false.

Character set filtering can prevent most SQL and script injection attacks when these characters are not permitted: <, >,
single quote ('), minus (-), period (.), left parenthesis ((), and right parenthesis ()).

 PermitLettersUppercase (Boolean) – When character set filtering is enabled and this is true, all uppercase letters are
permitted. This defaults to true.

 PermitLettersLowercase (Boolean) – When character set filtering is enabled and this is true, all lowercase letters are
permitted. This defaults to true.

 PermitDigits (Boolean) – When character set filtering is enabled and this is true, all digit characters are permitted.
This defaults to true.

 PermitSpace (Boolean) – When character set filtering is enabled and this is true, the Space character is permitted.
This defaults to true.

 PermitEnter (Boolean) – When character set filtering is enabled and this is true, the Enter character is permitted. This
defaults to false.

 PermitSQLAttackChars (Boolean) - When character set filtering is enabled and this is true, the following characters
are permitted: single quote ('), minus (-), and semicolon (;). These are characters used by hackers to develop their SQL
injection attacks. Single quote starts a hack in an ad-hoc statement. Minus is used to terminate a hack through this SQL
comment symbol: --. Semicolon separates SQL statements.

If you leave this as false but still want to permit one or more of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitScriptAttackChars (Boolean) - When character set filtering is enabled and this is true, the following
characters are permitted: less than (<) and greater than (>). These are characters used by hackers to develop their script
injection attacks.

If you leave this as false but still want to permit one of these characters, use PermitTheseCharacters.

This defaults to false.

 PermitTheseCharacters (String) – When character set filtering is enabled and this has text, each character listed is part
of the permitted character set. Do not add spaces or other formatting. This is good for adding punctuation or specific
letters and digits. For example, this string permits brackets, plus and minus: “[]+-”.

This defaults to "".

If you set DetectInjection to false, do not permit these characters: <, >, single quote ('), minus (-), period (.), left
parenthesis ((), and right parenthesis ()). Always be sure to neutralize the input.

 BlankValueAllowed (Boolean – When true, the value associated with this field can be blank. It defaults to false.

 Required (Boolean) – When true, this cookie must be defined. It defaults to false. WARNING: The user can block
cookies which will cause this to generate an error. Only set this to true when you can demand that the users keep cookies
enabled.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 120 of 277
http://www.PeterBlum.com

Adding a CookieRule Object as ASP.NET Text
The ASP.NET text of the PageSecurityValidator will nest each CookieRule object within the <CookieRules> group
like this:

<des:PageSecurityValidator runat="server" [properties] >
 <CookieRules>
 <des:CookieRule Name="RecordID" DataType="Integer" Minimum="10" />
 <des:CookieRule Name="LastName" DataType="String"
 CharacterSetFiltering="true" PermitDigits="false" />
 </CookieRules>
</des:PageSecurityValidator>

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 121 of 277
http://www.PeterBlum.com

Adding a CookieRule Object Programmatically
Here are the steps:

1. Create an instance of the PeterBlum.DES.Security.CookieRule class. There are several constructors
available, shown below.

2. Assign values to any desired properties.

3. Add the object to the PageSecurityValidator.CookieRules collection through its Add() method.

An example is shown with each constructor.

Constructor with no parameters

Use this constructor when you will assign all properties. You must assign the Name property for it to be a valid
CookieRule object.

[C#]

public CookieRule()

[VB]

Public Sub New()

Example

[C#]

PeterBlum.DES.Security.CookieRule vRule =
 new PeterBlum.DES.Security.CookieRule();
vRule.Name = "FontSize";
PageSecurityValidator.CookieRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.CookieRule = _
 New PeterBlum.DES.Security.CookieRule()
vRule.Name = "FontSize"
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.CookieRules.Add(vRule)

Constructor with only the Name property

Use this constructor when you want to assign the Name property within the constructor and other properties after.

[C#]

public CookieRule(string pName)

[VB]

Public Sub New(ByVal pName As String)

Example

[C#]

PeterBlum.DES.Security.CookieRule vRule =
 new PeterBlum.DES.Security.CookieRule("FontSize");
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer;
PageSecurityValidator.CookieRules.Add(vRule);

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 122 of 277
http://www.PeterBlum.com

[VB]

Dim vRule As PeterBlum.DES.Security.CookieRule = _
 New PeterBlum.DES.Security.CookieRule("FontSize")
vRule.DataType = PeterBlum.DES.Security.InputDataType.Integer
PageSecurityValidator.CookieRules.Add(vRule)

Constructor with most of the properties

The Required property is omitted only because its such a special case.

 [C#]

public CookieRule(string pName,
 PeterBlum.DES.Security.InputDataType pDataType,
 string pTypeFormatting,
 string pMinimum,
 string pMaximum,
 bool pBlankValueAllowed,
 bool pDetectInjection,
 PeterBlum.DES.Security.SQLDetectionLevel pSQLDetectionLevel,
 PeterBlum.DES.Security.HTMLTagMode pHTMLTagMode,
 string pHTMLTags,
 bool pCharacterSetFiltering,
 bool pPermitLettersUppercase,
 bool pPermitLettersLowercase,
 bool pPermitDigits,
 bool pPermitSpace,
 bool pPermitSQLAttackChars,
 bool pPermitScriptAttackChars,
 string pPermitTheseCharacters)

[VB]

Public Sub New(ByVal pName As String,
 ByVal pDataType PeterBlum.DES.Security.InputDataType,
 ByVal pTypeFormatting As String,
 ByVal pMinimum As String,
 ByVal pMaximum As String,
 ByVal pBlankValueAllowed As Boolean,
 ByVal pDetectInjection As Boolean,
 ByVal pSQLDetectionLevel As PeterBlum.DES.Security.SQLDetectionLevel,
 ByVal pHTMLTagMode As PeterBlum.DES.Security.HTMLTagMode,
 ByVal pHTMLTags As String,
 ByVal pCharacterSetFiltering As Boolean,
 ByVal pPermitLettersUppercase As Boolean,
 ByVal pPermitLettersLowercase As Boolean,
 ByVal pPermitDigits As Boolean,
 ByVal pPermitSpace As Boolean,
 ByVal pPermitEnter As Boolean,
 ByVal pPermitSQLAttackChars As Boolean,
 ByVal pPermitScriptAttackChars As Boolean,
 ByVal pPermitTheseCharacters As String)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 123 of 277
http://www.PeterBlum.com

Example

[C#]

PeterBlum.DES.Security.CookieRule vRule =
 new PeterBlum.DES.Security.CookieRule("FontSize",
 PeterBlum.DES.Security.InputDataType.Integer,
 "", "", "", true, false,
 PeterBlum.DES.Security.SQLDetectionLevel.High,
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal,
 "", true, true, true, true, true, false, false, false, "");
PageSecurityValidator.CookieRules.Add(vRule);

[VB]

Dim vRule As PeterBlum.DES.Security.CookieRule = _
 New PeterBlum.DES.Security.CookieRule("FontSize", _
 PeterBlum.DES.Security.InputDataType.Integer, _
 "", "", "", True, False, _
 PeterBlum.DES.Security.SQLDetectionLevel.High, _
 PeterBlum.DES.Security.HTMLTagMode.AllIllegal, _
 "", True, True, True, True, True, False, False, False, "")
PageSecurityValidator.CookieRules.Add(vRule)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 124 of 277
http://www.PeterBlum.com

PageSecurityValidator Methods
This section includes the public methods of the PageSecurityValidator. They can be categorized as follows:

 Cleanup Input

 Notify the Security Analysis Report of neutralization efforts. The methods that clean up input are also in this category.

 Set the HiddenFieldRule.OriginalValue property

Here are the method names.
Click on any of these topics to jump to them:

 Methods to Cleanup Input and Notify The Report

 AddCommentToElement Methods

 AddCommentToPage Method

 CleanupInput Method (with length check)

 CleanupInput Method (without length check)

 CleanupInputEncodeInvalidTags Methods

 CleanupInputEncodeInvalidTags2 Method

 CleanupInputRemoveInvalidTags Methods

 CleanupInputRemoveInvalidTags2 Method

 DescribeValidator Methods

 HTMLDecodePreserveTags Method

 PrintReport Method

 Methods to Set the HiddenFieldRule.OriginalValue Property

 SetOriginalValue Method using HtmlInputHidden control

 SetOriginalValue Method for a field within a control

 ScriptNeutralized Methods

 SQLNeutralized Methods

 Methods to Exclude A Control From Validation

 ThisControlIsSafe Method

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 125 of 277
http://www.PeterBlum.com

Methods to Cleanup Input and Notify The Report

CleanupInput Method (with length check)

Modifies the text to limit SQL injection and stop script injection. Use this to neutralize SQL injection when using ad-hoc
SQL statements. However, it is far better to switch to using parameterized SQL statements and stored procs. Because script
injection is cleaned up using Server.HtmlEncode(), it is fully neutralized. So this method also adds a comment to the
Security Analysis Report that indicates script injection has been neutralized.

Call this on values from any form of input. You should consider using this on any value returned from the database that you
will use, such as in another ad-hoc SQL statement or in a cookie. That’s because the string you save in the database must be
passed a pair of single quotes but when its returned, it is back to one single quote. Passing it back to your database this way
will cause a SQL injection attack.

For SQL injection, a single quote is replaced by a pair of single quotes and each pair of minus characters (representing a SQL
comment) is removed.

For script injection, Server.HtmlEncode()is used. If you want to preserve some tags, use
CleanupInputEncodeInvalidTags() or CleanupInputRemoveInvalidTags() instead of this method.

Since the length of the text may increase, you can establish a size limit. If that limit is exceeded, you can determine how you
will learn about this: by returning a null value or throwing an exception.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden, query
string, or cookie) and a name for it.

Note: If you have assigned a TextLengthSecurityValidator to the control that you intend to clean up, use its
CleanupInput() method instead. It is optimized to avoid running cleanup code more than once on the control’s value.

[C#]

public string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript,
 int pMaxLength, PeterBlum.DES.Security.LengthFailure pLengthFailure,
 Control pControl
 string pComment)

public string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript,
 int pMaxLength, PeterBlum.DES.Security.LengthFailure pLengthFailure,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

[VB]

Public Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean,
 ByVal pMaxLength As Integer,
 ByVal pLengthFailure As PeterBlum.DES.Security.LengthFailure,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean,
 ByVal pMaxLength As Integer,
 ByVal pLengthFailure As PeterBlum.DES.Security.LengthFailure,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 126 of 277
http://www.PeterBlum.com

Parameters

pOriginal

The string to clean up.

pCleanupSQL

When true, cleanup SQL. That means replace single quotes to pairs of single quotes and remove each pair of
minus characters (representing a SQL comment).

Only use this with ad-hoc SQL statements. When using parameterized SQL statements and stored procs, leave this
false. See “Neutralizing SQL Injection”.

WARNING: When you maintain ad-hoc statements, you must replace single quotes with a pair of single quotes, even
when the SQLDetectionLevel is High.

pCleanupScript

When true, cleanup scripts. It uses Server.HtmlEncode().

pMaxLength

The maximum length of the text. Beyond this, use the rule from pLengthFailure to communicate an error. If 0, the
length is not checked.

pLengthFailure

When the length is exceeded, the action to take. The enumerated type
PeterBlum.DES.Security.LengthFailure has these values:

o Exception – throw an exception of type PeterBlum.DES.DESException

o Null – Return value of null/nothing.

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. (SQL injection cleanup is not considered aggressive
enough to fully neutralize attacks. You must use the SQLNeutralized() method when you can confirm that
SQL injection is fully neutralized. If "", the following comment is added:
“PageSecurityValidator.CleanupInput applied HtmlEncode.”

Return value

The cleaned up string. If the length was exceeded, expect a value of null/nothing or for the method to throw a
PeterBlum.DES.DESException exception.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 127 of 277
http://www.PeterBlum.com

Example: Return null/nothing

This example uses the visible control TextBox1, a TextBox control. It cleans up both SQL and script injection. It imposes a
40 character limit. It uses the default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInput(TextBox1.Text,
 true, true, 40, PeterBlum.DES.Security.LengthFailure.Null,
 TextBox1, "");
if (vCleanValue != null)
{
 // code to save the data
}

[VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInput(TextBox1.Text,_
 True, True, 40, PeterBlum.DES.Security.LengthFailure.Null, _
 TextBox1, "")
If Not vCleanValue Is Nothing Then
 ' code to save the data
End If

Example: Throw Exception

This example uses the query string parameter “LastName”. It cleans up both SQL and script injection. It imposes a 30
character limit. It uses a custom comment.

[C#]

try
{
 string vCleanValue = PageSecurityValidator1.CleanupInput(
 Request.QueryString["LastName"],
 true, true, 30, PeterBlum.DES.Security.LengthFailure.Exception,
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");
 // code to save the data here
}
catch (PeterBlum.DES.DESException)
{
 // handle the error
}

[VB]

Try
 Dim vCleanValue As String = PageSecurityValidator1.CleanupInput(_
 Request.QueryString("LastName"),_
 True, True, 30, PeterBlum.DES.Security.LengthFailure.Exception, _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")
 ' code to save the data
Catch vExp As PeterBlum.DES.DESException
 ' handle the error
End Try

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 128 of 277
http://www.PeterBlum.com

CleanupInput Method (without length check)

Modifies the text to limit SQL injection and stop script injection. Use this to neutralize SQL injection when using ad-hoc
SQL statements. However, it is far better to switch to using parameterized SQL statements and stored procs. Because script
injection is cleaned up using Server.HtmlEncode(), it is fully neutralized. So this method also adds a comment to the
Security Analysis Report that indicates script injection has been neutralized.

Call this on values from any form of input. You should consider using this on any value returned from the database that you
will use, such as in another ad-hoc SQL statement or in a cookie. That’s because the string you save in the database must be
passed a pair of single quotes but when its returned, it is back to one single quote. Passing it back to your database this way
will cause a SQL injection attack.

For SQL injection, a single quote is replaced by a pair of single quotes and each pair of minus characters (representing a SQL
comment) is removed.

For script injection, Server.HtmlEncode()is used. If you want to preserve some tags, use
CleanupInputEncodeInvalidTags() or CleanupInputRemoveInvalidTags() instead of this method.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

[C#]

public string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript,
 Control pControl
 string pComment)

public string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

[VB]

Public Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

Parameters

pOriginal

The string to clean up.

pCleanupSQL

When true, cleanup SQL. That means replace single quotes to pairs of single quotes and remove each pair of
minus characters (representing a SQL comment).

Only use this with ad-hoc SQL statements. When using parameterized SQL statements and stored procs, leave this
false. See “Neutralizing SQL Injection”.

WARNING: When you maintain ad-hoc statements, you must replace single quotes with a pair of single quotes, even
when the SQLDetectionLevel is High.

pCleanupScript

When true, cleanup scripts. It uses Server.HtmlEncode().

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 129 of 277
http://www.PeterBlum.com

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. (SQL injection cleanup is not considered aggressive
enough to fully neutralize attacks. You must use the SQLNeutralized() method when you can confirm that
SQL injection is fully neutralized.) If blank, the following comment is added:
“PageSecurityValidator.CleanupInput applied HtmlEncode.”

Return value

The cleaned up string.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. It cleans up both SQL and script injection. It uses the
default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInput(TextBox1.Text,
 true, true, TextBox1, "");

[VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInput(TextBox1.Text,_
 True, True, TextBox1, "")

Example: Query String Parameter

This example uses the query string parameter “LastName”. It cleans up both SQL and script injection. It uses a custom
comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInput(
 Request.QueryString["LastName"],
 true, true,
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 130 of 277
http://www.PeterBlum.com

 [VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInput(_
 Request.QueryString("LastName"),_
 True, True, _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 131 of 277
http://www.PeterBlum.com

CleanupInputEncodeInvalidTags Methods

Cleans up input to prevent script injection attacks by encoding invalid tags while preserving tags from a list that you supply.
It does not handle clean up for SQL injection. You supply a list of tags names that you want to preserve in their original state.

Note: If you want to supply a list of tag names to encode and keep the rest, use
CleanupInputEncodeInvalidTags2().

The clean up keeps any tags from that list intact, encodes all other tags, and encodes the rest of the text. If a valid tag has an
illegal value, the entire tag is encoded. This further protects you against attacks through your valid tags. Illegal value are
determined from the <illegalattributes> and <illegalattributecontents> sections in the Peter’s Input
Security configuration files.

This method records that script injection was neutralized in the Security Analysis Report. You can provide a comment if you
like, or let it assign a default comment.

When you load the encoded text and insert it into a web page, you will need to HtmlDecode it. While you can use
Server.HtmlDecode(), consider using the PageSecurityValidator.HtmlDecodePreserveTags() method
which handles some special cases formed by keeping some tags intact.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

Note: If you have assigned a TextLengthSecurityValidator to the control that you intend to clean up, use its
CleanupInput() method instead. It supports a valid tag list. It is optimized to avoid running cleanup code more than
once on the control’s value.

 [C#]

public string CleanupInputEncodeInvalidTags(string pOriginal,
 string pValidTags, Control pControl, string pComment)

public string CleanupInputEncodeInvalidTags(string pOriginal,
 string pValidTags,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

 [VB]

Public Function CleanupInputEncodeInvalidTags(ByVal pOriginal As String,
 ByVal pValidTags As String,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInputEncodeInvalidTags(ByVal pOriginal As String,
 ByVal pValidTags As String,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

Parameters

pOriginal

The string to clean up.

pValidTags

A semicolon-delimited list of tag names that are permitted. All tags not specified here will be encoded. Do not
include the < or > characters. Do not use spaces. For example, to keep <a>,
, and <p> tags, use “a;br;p”.

The <script> tag is never permitted. An exception is thrown if one is supplied. The <object>, <applet>,
and <embed> are permitted but should be used VERY carefully.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 132 of 277
http://www.PeterBlum.com

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. If "", the following comment is added:
“PageSecurityValidator.CleanupInputEncodeInvalidTags applied HtmlEncode on all
text except these tags: [pValidTags]. Any valid tag with attributes found
illegal was also encoded.”

Return value

The cleaned up string.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. It permits these tags:
, , and
<p>. It uses the default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputEncodeInvalidTags(
 TextBox1.Text, "br;span;font;p", TextBox1, "");
[VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInputEncodeInvalidTags(_
 TextBox1.Text, "br;span;font;p", TextBox1, "")

Example: Query String Parameter

This example uses the query string parameter “LastName”. It permits these tags:
, , and <p>. It uses
a custom comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputEncodeInvalidTags(
 Request.QueryString["LastName"],
 "br;span;font;p",
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 133 of 277
http://www.PeterBlum.com

 [VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInputEncodeInvalidTags(_
 Request.QueryString("LastName"),_
 "br;span;font;p", _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 134 of 277
http://www.PeterBlum.com

CleanupInputRemoveInvalidTags Methods

Cleans up input to prevent script injection attacks by removing invalid tags while preserving tags from a list that you supply.
It does not handle SQL injection. You supply a list of tags names that you want to preserve in their original state.

Note: If you want to supply a list of tag names to remove and keep the rest, use
CleanupInputRemoveInvalidTags2().

The cleanup keeps any tags from that list intact, removes all other tags, and encodes the rest of the text. If a valid tag has an
illegal value, the entire tag is removed. This further protects you against attacks through your valid tags. Illegal value are
determined from the <illegalattributes> and <illegalattributecontents> sections in the Peter’s Input
Security configuration files.

Hint: This method can remove all tags. Just set the pValidTags parameter to an invalid HTML tag like “abc”.

This method records that script injection was neutralized in the Security Analysis Report. You can provide a comment if you
like, or let it assign a default comment.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

Note: If you have assigned a TextLengthSecurityValidator to the control that you intend to clean up, use its
CleanupInput() method instead. It supports a valid tag list. It is optimized to avoid running cleanup code more than
once on the control’s value.

 [C#]

public string CleanupInputRemoveInvalidTags(string pOriginal,
 string pValidTags, Control pControl, string pComment)

public string CleanupInputRemoveInvalidTags(string pOriginal,
 string pValidTags,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

 [VB]

Public Function CleanupInputRemoveInvalidTags(ByVal pOriginal As String,
 ByVal pValidTags As String,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInputRemoveInvalidTags(ByVal pOriginal As String,
 ByVal pValidTags As String,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

Parameters

pOriginal

The string to clean up.

pValidTags

A semicolon-delimited list of tag names that are permitted. All tags not specified here will be removed. Do not
include the < or > characters. Do not use spaces. For example, to keep <a>,
, and <p> tags, use “a;br;p”.

The <script> tag is never permitted. An exception is thrown if one is supplied. The <object>, <applet>,
and <embed> are permitted but should be used VERY carefully.

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 135 of 277
http://www.PeterBlum.com

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. If "", the following comment is added:
“PageSecurityValidator.CleanupInputRemoveInvalidTags applied HtmlEncode on all
text except these tags: [pValidTags]. Any tag not on the list was removed.
Any valid tag with attributes found illegal was also removed.”

Return value

The cleaned up string.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. It permits these tags:
, , and
<p>. It uses the default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputRemoveInvalidTags(
 TextBox1.Text, "br;span;font;p", TextBox1, "");
[VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInputRemoveInvalidTags(_
 TextBox1.Text, "br;span;font;p", TextBox1, "")

Example: Query String Parameter

This example uses the query string parameter “LastName”. It permits these tags:
, , and <p>. It uses
a custom comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputRemoveInvalidTags(
 Request.QueryString["LastName"],
 "br;span;font;p",
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");

 [VB]

Dim vCleanValue As String = PageSecurityValidator1.CleanupInputRemoveInvalidTags(_
 Request.QueryString("LastName"), _
 "br;span;font;p", _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 136 of 277
http://www.PeterBlum.com

CleanupInputEncodeInvalidTags2 Method

Cleans up input to prevent script injection attacks by encoding invalid tags from a list that you supply while preserving the
rest of the tags. It does not handle clean up for SQL injection. You supply a list of tags names that you want to encode.

Note: If you want to supply a list of tag names to preserve and encode the rest, use
CleanupInputEncodeInvalidTags().

The clean up encodes any tags from that list, keeps all other tags intact, and encodes the rest of the text. If a valid tag has an
illegal value, the entire tag is encoded. This further protects you against attacks through your valid tags. Illegal value are
determined from the <illegalattributes> and <illegalattributecontents> sections in the Peter’s Input
Security configuration files.

This method records that script injection was neutralized in the Security Analysis Report. You can provide a comment if you
like, or let it assign a default comment.

When you load the encoded text and insert it into a web page, you will need to HtmlDecode it. While you can use
Server.HtmlDecode(), consider using the PageSecurityValidator.HtmlDecodePreserveTags() method
which handles some special cases formed by keeping some tags intact.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

[C#]

public string CleanupInputEncodeInvalidTags2(string pOriginal,
 string pInvalidTags, bool pAddIllegalTags,
 Control pControl, string pComment)

public string CleanupInputEncodeInvalidTags2(string pOriginal,
 string pInvalidTags, bool pAddIllegalTags,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

 [VB]

Public Function CleanupInputEncodeInvalidTags2(ByVal pOriginal As String,
 ByVal pInvalidTags As String,
 ByVal pAddIllegalTags As Boolean,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInputEncodeInvalidTags2(ByVal pOriginal As String,
 ByVal pInvalidTags As String,
 ByVal pAddIllegalTags As Boolean,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

Parameters

pOriginal

The string to clean up.

pInvalidTags

A semicolon-delimited list of tag names that should be encoded. All tags not specified here will be preserved unless
they have an illegal attribute. Do not include the < or > characters. Do not use spaces. For example, to keep <a>,

, and <p> tags, use “a;br;p”.

pAddIllegalTags

When true, all of the tags defined in <illegaltags> are also considered invalid and should be encoded. When
false, you should include the <script> tag and others that you consider invalid in the pInvalidTags parameter.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 137 of 277
http://www.PeterBlum.com

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. If "", the following comment is added:
“PageSecurityValidator.CleanupInputEncodeInvalidTags2 encoded these tags:
[pInvalidTags]. It encoded all text not contained in a tag. Any valid tag
with attributes found illegal was also encoded.”

Return value

The cleaned up string.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. It encodes these tags: <input>, <textarea>, <div>
and <bgsound>. It uses the default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputEncodeInvalidTags2(
 TextBox1.Text, "input;textarea;div;bgsound", TextBox1, "");
[VB]

Dim vCleanValue As String = _
 PageSecurityValidator1.CleanupInputEncodeInvalidTags2(_
 TextBox1.Text, "input;textarea;div;bgsound", TextBox1, "")

Example: Query String Parameter

This example uses the query string parameter “LastName”. It encodes these tags: <input>, <textarea>, <div> and
<bgsound>. It uses a custom comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputEncodeInvalidTags2(
 Request.QueryString["LastName"],
 "input;textarea;div;bgsound",
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 138 of 277
http://www.PeterBlum.com

 [VB]

Dim vCleanValue As String = _
 PageSecurityValidator1.CleanupInputEncodeInvalidTags2(_
 Request.QueryString("LastName"),_
 "input;textarea;div;bgsound", _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 139 of 277
http://www.PeterBlum.com

CleanupInputRemoveInvalidTags2 Method

Cleans up input to prevent script injection attacks by removing tags from a list that you supply while preserving the rest of
the tags that it finds. It does not handle SQL injection. You supply a list of tags names that you want to remove.

Note: If you want to supply a list of tag names to preserve and remove the rest, use
CleanupInputRemoveInvalidTags().

The cleanup removes any tags from that list, preserves all other tags, and encodes the rest of the text. If a valid tag has an
illegal value, the entire tag is removed. This further protects you against attacks through your valid tags. Illegal value are
determined from the <illegalattributes> and <illegalattributecontents> sections in the Peter’s Input
Security configuration files.

This method records that script injection was neutralized in the Security Analysis Report. You can provide a comment if you
like, or let it assign a default comment.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

[C#]

public string CleanupInputRemoveInvalidTags2(string pOriginal,
 string pInvalidTags, bool pAddIllegalTags,
 Control pControl, string pComment)

public string CleanupInputRemoveInvalidTags2(string pOriginal,
 string pInvalidTags, bool pAddIllegalTags,
 PeterBlum.DES.Security.InputArea pInputArea, string pName,
 string pComment)

 [VB]

Public Function CleanupInputRemoveInvalidTags2(ByVal pOriginal As String,
 ByVal pInvalidTags As String,
 ByVal pAddIllegalTags As Boolean,
 ByVal pControl As Control,
 ByVal pComment As String) As String

Public Function CleanupInputRemoveInvalidTags2(ByVal pOriginal As String,
 ByVal pInvalidTags As String,
 ByVal pAddIllegalTags As Boolean,
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String) As String

Parameters

pOriginal

The string to clean up.

pInvalidTags

A semicolon-delimited list of tag names that should be removed. All tags not specified here will be preserved unless
they have an illegal attribute. Do not include the < or > characters. Do not use spaces. For example, to keep <a>,

, and <p> tags, use “a;br;p”.

pAddIllegalTags

When true, all of the tags defined in <illegaltags> are also considered invalid and should be removed. When
false, you should include the <script> tag and others that you consider invalid in the pInvalidTags parameter.

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 140 of 277
http://www.PeterBlum.com

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName parameter
should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct script injection. If "", the following comment is added:
“PageSecurityValidator.CleanupInputRemoveInvalidTags2 removed these tags:
[pInvalidTags]. It encoded all text not contained in a tag. Any valid tag
with attributes found illegal was also removed.”

Return value

The cleaned up string.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. It removes these tags: <input>, <textarea>,
<div> and <bgsound>. It uses the default comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputRemoveInvalidTags2(
 TextBox1.Text, "input;textarea;div;bgsound", TextBox1, "");
[VB]

Dim vCleanValue As String = _
 PageSecurityValidator1.CleanupInputRemoveInvalidTags2(_
 TextBox1.Text, "input;textarea;div;bgsound", TextBox1, "")

Example: Query String Parameter

This example uses the query string parameter “LastName”. It removes these tags: <input>, <textarea>, <div> and
<bgsound>. It uses a custom comment.

[C#]

string vCleanValue = PageSecurityValidator1.CleanupInputRemoveInvalidTags2(
 Request.QueryString["LastName"],
 "input;textarea;div;bgsound",
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Cleaned up 'LastName' in the query string.");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 141 of 277
http://www.PeterBlum.com

 [VB]

Dim vCleanValue As String = _
 PageSecurityValidator1.CleanupInputRemoveInvalidTags2(_
 Request.QueryString("LastName"), _
 "input;textarea;div;bgsound", _
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Cleaned up 'LastName' in the query string.")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 142 of 277
http://www.PeterBlum.com

HTMLDecodePreserveTags Method

Similar to Server.HTMLDecode but preserves the contents of already unencoded tags. This is the reverse of
CleanupInputEncodeInvalidTags() and CleanupInputEncodeInvalidTags2(). It does not decode
HTML symbols enclosed in HTML tags.

Consider this text:

<img src='url' alttext='<i>picture</i>'/>

You want to convert the b tag but not anything in the img tag. This method does it safely.

[C#]

public string HTMLDecodePreserveTags(string pEncodedText)

[VB]

Public Function HTMLDecodePreserveTags(ByVal pEncodedText As String) As String

Parameters

pEncodedText

The encoded text to decode.

Return value

The decoded string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 143 of 277
http://www.PeterBlum.com

DescribeValidator Methods

Peter’s Input Security does not know how your own custom validators or regular expressions in RegexValidators may protect
the input against attacks. Call this to tell the Security Analysis Report about your custom validators, regular expressions and
other techniques to validate data.

You can supply a suggested SQL and Script rating. These will be used if they are higher than the rating determined by the
Security Analysis Report. In that case, the report will post a notice within the Rating section for the input.

You can supply a comment to describe what your validator control or validation code does to detect an attack. For example,
if you have a RegexValidator with an expression that demands this pattern: [digits][space][letters] , you may describe it as a
“US Street address format”.

There are two methods here. One is for controls that have a validator control assigned. The other is for all other forms of
inputs. Consider using this method when you write code to validate hidden fields, query strings, and cookies.

[C#]

public void DescribeValidator(Control pControl,
 PeterBlum.DES.BaseValidator pValidator,
 PeterBlum.DES.Security.ReportRating pSQLRating,
 PeterBlum.DES.Security.ReportRating pScriptRating,
 string pDescription)

public void DescribeValidator(PeterBlum.DES.Security.InputArea pInputArea,
 string pName,
 PeterBlum.DES.Security.ReportRating pSQLRating,
 PeterBlum.DES.Security.ReportRating pScriptRating,
 string pDescription)

[VB]

Public Sub DescribeValidator(ByVal pControl As Control,
 ByVal pValidator As PeterBlum.DES.BaseValidator,
 ByVal pSQLRating As PeterBlum.DES.Security.ReportRating,
 ByVal pScriptRating As PeterBlum.DES.Security.ReportRating,
 ByVal pDescription As String)

Public Sub DescribeValidator(ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pSQLRating As PeterBlum.DES.Security.ReportRating,
 ByVal pScriptRating As PeterBlum.DES.Security.ReportRating,
 ByVal pDescription As String)

Parameters

pControl

Use this when you have a reference to a control on the page. Pass the reference to the control. Along with all visible
controls, it supports hidden fields defined using the System.Web.UI.HtmlControls.HtmlInputHidden
control.

pValidator

Use this when you have a reference to a validator control on the page. It accepts any Peter’s Data Entry Suite
validator control. Pass the reference to the control.

The report uses this to add a control name (the UniqueID of the Validator) to your description so that it can easily be
identified.

If you do not have a validator control, you can pass null/nothing. It will not add a control name.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 144 of 277
http://www.PeterBlum.com

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName
parameter should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pSQLRating

Your best assessment of how well this validator detects SQL injection attacks. If this value is higher than the value
determined by the report, it will be used. (It will never reduce the rating determined by the report.) The enumerated
type PeterBlum.DES.Security.ReportRating has these values:

o None – Use this when you know that it will not detect an attack or cannot determine if it will work.

o Poor – Consider this when you know it provides protection at least 50% of the time.

o Good – Consider this when you know it provides protection 90% of the time.

o Excellent – Only use this when you know it provides protection 99% of the time.

pScriptRating

Your best assessment of how well this validator detects script injection attacks. If this value is higher than the value
determined by the report, it will be used. (It will never reduce the rating determined by the report.) The enumerated
type PeterBlum.DES.Security.ReportRating has these values:

o None – Use this when you know that it will not detect an attack or cannot determine if it will work.

o Poor – Consider this when you know it provides protection at least 50% of the time.

o Good – Consider this when you know it provides protection 90% of the time.

o Excellent – Only use this when you know it provides protection 99% of the time.

pDescription

A description of the validation rule and how it detects attacks. It can be lengthy, if needed. This description will
appear in the Validators section of the input on the report.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control, and CustomValidator1, a CustomValidator.

[C#]

PageSecurityValidator1.DescribeValidator(TextBox1, CustomValidator1,
 PeterBlum.DES.Security.ReportRating.Good,
 PeterBlum.DES.Security.ReportRating.None,
 "Blocks the ' and – characters");

[VB]

PageSecurityValidator1.DescribeValidator(TextBox1, CustomValidator1, _
 PeterBlum.DES.Security.ReportRating.Good, _
 PeterBlum.DES.Security.ReportRating.None, _
 "Blocks the ' and – characters")

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 145 of 277
http://www.PeterBlum.com

SQLNeutralized Methods

When you have written the code to fully neutralize SQL injection, use this method to update the Security Analysis Report.
You will identify the element on the page that is neutralized and supply a comment.

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

When using an ad-hoc SQL statement, only consider it neutralized when the following conditions have been met:

 Each input that is not textual, such as an integer, decimal, date or time, has been validated. You can use the various
validators from Peter’s Data Entry Suite.

 Each input that is textual has been cleaned up (replace single quotes with pairs of single quotes and remove all pairs of
minus characters). You can use the various CleanupInput() methods on the PageSecurityValidator or
TextLengthSecurityValidator.

 Each textual field that has a size limit within the database has its cleaned up text does not exceed that size limit. Use the
TextLengthSecurityValidator or the CleanupInput() method that takes a length limit.

[C#]

public void SQLNeutralized(Control pControl, string pComment)

public void SQLNeutralized(PeterBlum.DES.Security.InputArea pInputArea,
 string pName, string pComment)

[VB]

Public Sub SQLNeutralized(ByVal pControl As Control,
 ByVal pComment As String)

Public Sub SQLNeutralized(ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String)

Parameters

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName
parameter should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct SQL injection. If blank, no comment is written to the report.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 146 of 277
http://www.PeterBlum.com

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. The programmer has passed the value from TextBox1
into a parameter of the stored procedure SP_RecordAccount.

[C#]

PageSecurityValidator1.SQLNeutralized(TextBox1, "Parameter into SP_RecordAccount");

[VB]

PageSecurityValidator1.SQLNeutralized(TextBox1, "Parameter into SP_RecordAccount")

Example: Query String Parameter

This example uses the query string parameter “LastName”. The programmer has passed the value from “LastName” into a
parameter of the stored procedure SP_RecordAccount.

[C#]

PageSecurityValidator1.SQLNeutralized(
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Parameter into SP_RecordAccount");

 [VB]

PageSecurityValidator1.SQLNeutralized(_
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Parameter into SP_RecordAccount")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 147 of 277
http://www.PeterBlum.com

ScriptNeutralized Methods

When you have written the code to fully neutralize script injection, use this method to update the Security Analysis Report.
You will identify the element on the page that is neutralized and supply a comment.

If you use the CleanupInput(), CleanupInputEncodeInvalidTags() or
CleanupInputRemoveInvalidTags() methods to neutralize script injection, you do not need to use this method as
those methods internally call ScriptNeutralized().

There are two overloaded methods. Use the first when you have a web control reference such as to a visible field or hidden
field declared with runat=server. Use the second for all other situations, defining the type of input (visible, hidden,
query string, or cookie) and a name for it.

[C#]

public void ScriptNeutralized(Control pControl, string pComment)

public void ScriptNeutralized(PeterBlum.DES.Security.InputArea pInputArea,
 string pName, string pComment)

[VB]

Public Sub ScriptNeutralized(ByVal pControl As Control,
 ByVal pComment As String)

Public Sub ScriptNeutralized(ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String)

Parameters

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName
parameter should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

A comment about what was done to correct SQL injection. If blank, no comment is written to the report.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. The programmer has used Server.HtmlEncode()
to neutralize it.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 148 of 277
http://www.PeterBlum.com

[C#]

PageSecurityValidator1.ScriptNeutralized(TextBox1,
 "Used Server.HtmlEncode()");

[VB]

PageSecurityValidator1.ScriptNeutralized(TextBox1, _
 "Used Server.HtmlEncode()")

Example: Query String Parameter

This example uses the query string parameter “LastName”. The programmer has used Server.HtmlEncode() to
neutralize it.

[C#]

PageSecurityValidator1.ScriptNeutralized(
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Used Server.HtmlEncode()");

[VB]

PageSecurityValidator1.ScriptNeutralized(_
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Used Server.HtmlEncode()")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 149 of 277
http://www.PeterBlum.com

AddCommentToElement Methods

Add a comment to the Security Analysis Report for a specific element on the page. It creates a “Programmer’s Comments”
section right with that element. You can use it for what ever you like:

 Describe how you neutralized the problem. “Converted to stored procedure SP_SaveRecord”

 Describe what remains unresolved. “Waiting for a CustomValidator that supports people’s names”

 Provide your identity and the date. “Work done by Peter Blum on 5/31/04”

Each call to this method will add a new line to the “Programmer’s Comments” section.

[C#]

public void AddCommentToElement(Control pControl, string pComment)

public void AddCommentToElement(PeterBlum.DES.Security.InputArea pInputArea,
 string pName, string pComment)

[VB]

Public Sub AddCommentToElement(ByVal pControl As Control,
 ByVal pComment As String)

Public Sub AddCommentToElement(
 ByVal pInputArea As PeterBlum.DES.Security.InputArea,
 ByVal pName As String,
 ByVal pComment As String)

Parameters

pControl

Use this when you have a reference to a web control on the page. Pass the reference to the control.

pInputArea

Use this when referring to a query string parameter, cookie, or an element in Request.Form that isn’t associated
with a web control. You must also specify a name to the Input Area in the pName parameter.

The enumerated type PeterBlum.DES.Security.InputArea has these values:

o Visible – An HTML element on the page that does not have an associated web control. The pName
parameter should be the value from the name= attribute within the tag.

o Hidden – A hidden field, either defined by Page.RegisterHiddenField() or an <input
type='hidden' /> without runat=server. The pName parameter is the name= attribute of the hidden
field.

o QueryString – A query string parameter. The pName parameter is the name of the query string parameter.

o Cookie – A cookie. The pName parameter is the name of the cookie.

pName

Use in association with pInputArea as described above. It must be assigned to a valid identifier of the input type.

pComment

Your comment.

Example: Web Control

This example uses the visible control TextBox1, a TextBox control. The programmer indicates that a solution is pending.

[C#]

PageSecurityValidator1.AddCommentToElement(TextBox1,
 "Neutralization solution is pending – JKL 3/04/2005");

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttprequestclassformtopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 150 of 277
http://www.PeterBlum.com

[VB]

PageSecurityValidator1.AddCommentToElement(TextBox1, _
 "Neutralization solution is pending – JKL 3/04/2005")

Example: Query String Parameter

This example uses the query string parameter “LastName”. The programmer indicates that a solution is pending.

[C#]

PageSecurityValidator1.AddCommentToElement(
 PeterBlum.DES.Security.InputArea.QueryString, "LastName",
 "Neutralization solution is pending – JKL 3/04/2005");

 [VB]

PageSecurityValidator1.AddCommentToElement(_
 PeterBlum.DES.Security.InputArea.QueryString, "LastName", _
 "Neutralization solution is pending – JKL 3/04/2005")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 151 of 277
http://www.PeterBlum.com

AddCommentToPage Method

Add a comment to the Security Analysis Report that is for the entire page. It creates a Programmer’s Comments” section at
the end of the report. You can use it for what ever you like. Some suggestions include:

 Describe how you neutralized the problem. “Converted to stored procedure SP_SaveRecord”

 Describe what remains unresolved. “Waiting for a CustomValidator that supports people’s names”

 Provide your identity and the date. “Work done by Peter Blum on 5/31/04”

Each call to this method will add a new line to the “Programmer’s Comments” section.

[C#]

public void AddCommentToPage(string pComment)

[VB]

Public Sub AddCommentToPage(ByVal pComment As String)

Parameters

pComment

Your comment.

Example

The programmer adds two comments: solution and their initials + date.

[C#]

PageSecurityValidator1.AddCommentToPage(
 "Converted to using the stored proc SP_SaveAccount");
PageSecurityValidator1.AddCommentToPage(
 "Work done by JKL on 3/04/2005");

 [VB]

PageSecurityValidator1.AddCommentToPage(_
 "Converted to using the stored proc SP_SaveAccount")
PageSecurityValidator1.AddCommentToPage(_
 "Work done by JKL on 3/04/2005")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 152 of 277
http://www.PeterBlum.com

PrintReport Method

Prints the Security Analysis Report when EnableSecurityReport is true and the report’s settings allow it to be printed.
This is automatically called by the PageSecurityValidator for you in its Render() method.

If you redirect to another page, you should call this before redirecting, to output the report.

[C#]

public void PrintReport()

[VB]

Public Sub PrintReport()

Example

This example uses Response.Redirect() to redirect. Other forms of redirection include Server.Transfer() and
FormsAuthentication.RedirectFromLoginPage().

[C#]

PageSecurityValidator1.PrintReport();
Response.Redirect("NextPage.aspx");

[VB]

PageSecurityValidator1.PrintReport()
Response.Redirect("NextPage.aspx")

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpresponseclassredirecttopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebhttpserverutilityclasstransfertopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebsecurityformsauthenticationclassredirectfromloginpagetopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 153 of 277
http://www.PeterBlum.com

Methods to Set the HiddenFieldRule.OriginalValue Property
The SetOriginalValue() method to updates the HiddenFileRule.OriginalValue property. Call it any time that you set
the value of a hidden field whose value should not change on the client-side.

There are two SetOriginalValue() methods that perform the same task.

SetOriginalValue Method using HtmlInputHidden control

Use this when you have an HtmlInputHidden web control. This is formed by <input type='hidden'
runat=server />. First assign the value to the HtmlInputHidden control. Then call SetOriginalValue(). It will
use the value assigned to the control.

[C#]

public bool SetOriginalValue(
 System.Web.UI.HtmlControls.HtmlInputHidden pHiddenControl)

[VB]

Public Function SetOriginalValue(
 ByVal pHiddenControl As System.Web.UI.HtmlControls.HtmlInputHidden) As Boolean

Parameters

pHiddenControl

The HtmlInputHidden control. If you do not have a reference to the control, use Page.FindControl() to locate
it by its ID property.

Return value

True when there was a matching HiddenFieldRule object found in PageSecurityValidator.HiddenFieldRules.
False otherwise.

Example

Update the hidden field whose ID is “Hidden1” with the value of “40”.

[C#]

HtmlInputHidden vHiddenControl = (HtmlInputHidden)Page.FindControl("Hidden1");
vHiddenControl.Value = "40";
PageSecurityValidator.SetOriginalValue(vHiddenControl);

[VB]

Dim vHiddenControl As HtmlInputHidden = _
 CType(Page.FindControl("Hidden1"), HtmlInputHidden)
vHiddenControl.Value = "40"
PageSecurityValidator.SetOriginalValue(vHiddenControl)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIControlClassFindControlTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 154 of 277
http://www.PeterBlum.com

SetOriginalValue Method for a field within a control

Use this when your hidden field was created with Page.RegisterHiddenField() method or the <input
type='hidden'/> tag without runat=server. It takes the name associated with the hidden field. You must also pass
the value.

[C#]

public bool SetOriginalValue(string pName, string pValue)

[VB]

Public Function SetOriginalValue(ByVal pName As String,
 ByVal pValue As String) As Boolean

Parameters

pName

The name associated with the hidden field. When using Page.RegisterHiddenField(), pass the value of the
first parameter. When using <input type='hidden'/>, pass the value of the name= attribute.

pValue

The value assigned to the hidden field.

Return value

True when there was a matching HiddenFieldRule object found in PageSecurityValidator.HiddenFieldRules.
False otherwise.

Example

Use the same value as assigned with Page.RegisterHiddenField().

[C#]

Page.RegisterHiddenField("Hidden1", "40");
PageSecurityValidator.SetOriginalValue("Hidden1", "40");

[VB]

Page.RegisterHiddenField("Hidden1", "40")
PageSecurityValidator.SetOriginalValue("Hidden1", "40")

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebUIPageClassRegisterHiddenFieldTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 155 of 277
http://www.PeterBlum.com

Methods to Exclude A Control From Validation

ThisControlIsSafe Method

Use this method when you want to tell the PageSecurityValidator not to validate a specific control, such as a button, that is
posting a value in Request.Form. You consider the control safe because the field never returns any injection attack data to
you. It internally cleans up or ignores the data. Examples include Button, Calendar, and Checkbox.

A “safe” control is different from a neutralized control. Neutralized is when the field returns a potentially unsafe value and
you take additional steps to protect yourself from it. Examples include TextBox, ListBox, and most RichTextBoxes.

There are two cases to consider:

 A control that you consider safe is reporting an attack. Here’s a common case: Button controls should be safe. Button
controls always returns the value from the Button.Text property in Request.Form. If that Button name contains any
SQL keyword defined in <initialsqlkeywords> or <dangeroussqlkeywords>, a attack will be reported.
For example, the SQL keyword “Save” is defined in <initialsqlkeywords>. A button labeled “Save this Page”
will report an attack.

 The SQL Detection Engine or HTML and Script Detection Engine are CPU intensive. This method will prevent them
from being used unnecessarily. The Security Analysis Report will identify the controls it thinks is “safe” in the Visible
Controls section. You can use these controls with the ThisControlIsSafe() method.

Note: The SQL Detection Engine will ignore buttons and other controls whose value in Request.Form is only letters, digits
and underscore. While you can avoid using ThisControlIsSafe() on them, you still improve performance when using
this method.

This method will update the Security Analysis Report to indicate that the control is considered safe.

 [C#]

public void ThisControlIsSafe(Control pControl)

[VB]

Public Sub ThisControlIsSafe(ByVal pControl As Control)

Parameters

pControl

A control object that you know is safe. Its value will never be used directly. Buttons, CheckBoxes, and
RadioButtons are all good cases. The Security Analysis Report will make other recommendations.

Example

Two buttons will be removed: CancelButton and SaveButton. The label of CancelButton is “Cancel” and will not trigger
attack but is here to improve performance. The label of SaveButton is “Save This Page”. It will trigger an attack due to the
SQL keyword “Save” and space characters.

[C#]

PageSecurityValidator1.ThisControlIsSafe(CancelButton);
PageSecurityValidator1.ThisControlIsSafe(SaveButton);

 [VB]

PageSecurityValidator1.ThisControlIsSafe(CancelButton)
PageSecurityValidator1.ThisControlIsSafe(SaveButton)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 156 of 277
http://www.PeterBlum.com

The FieldSecurityValidator
Use the FieldSecurityValidator (class PeterBlum.DES.Security.FieldSecurityValidator) on many of your
visible controls. It overrides the defaults for detection of SQL and script injection on the PageSecurityValidator with these
features:

 Change detection rules for SQL or script injection

 Reports attacks to the LogAndRespond Engine

 Show an error message specific to the web control.

Please see “The FieldSecurityValidator, An Overview” for a more detailed overview.

Click on any of these topics to jump to them:

 The FieldSecurityValidator, An Overview

 FieldSecurityValidator Properties

 Methods of FieldSecurityValidator

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 157 of 277
http://www.PeterBlum.com

FieldSecurityValidator Properties
The FieldSecurityValidator is subclassed from PeterBlum.DES.BaseAnyValidator. It contains the properties shared
by all DES validators.

Click on any of these topics to jump to them:

 Control To Evaluate Properties

 Detect Injection Properties

 Communication Mode Properties

 Showing The Error Properties

 Changing When the Validator is Evaluated Properties

 Properties From the Base Class That Should Not Be Used

Control To Evaluate Properties
 ControlIDToEvaluate (string) – Identifies the data entry control that will be evaluated. This property takes the ID of the

control. It must be assigned unless you are using the ControlToEvaluate property.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

 ControlToEvaluate (System.Web.UI.Control) – An alternative to ControlIDToEvaluate. Use it when the data entry
control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you have
a validator instance in the variable “Val1” and a textbox instance in the variable “TextBox1”, write code like this:
Val1.ControlToEvaluate = TextBox1.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 158 of 277
http://www.PeterBlum.com

Detect Injection Properties
 DetectSQLInjection (Boolean) – Use this to detect SQL injection attacks. It uses the SQL Detection Engine.

When true, it detects SQL injection. It defaults to true.

Set it to false only if you fully neutralize the input and do not want to report an error when SQL expressions are
supplied.

The Security Analysis Report may also recommend setting this to false because it finds other validators that will
protect your page. When enabled, Peter’s Input Security uses CPU intensive code to detect attacks. If you want to log
SQL injection attacks, set this to true because the Peter’s Data Entry Suite validators cannot log attacks.

Use the SQLDetectionLevel property to determine how aggressive the testing is.

To learn more about and customize the SQL Detection Engine, see “About The SQL Detection Engine”.

Note: All possible characters are permitted by the SQL Detection Engine. If you want to prevent them, use a
CharacterValidator from Peter’s Data Entry Suite.

 SQLDetectionLevel (enum PeterBlum.DES.Security.SQLDetectionLevel) – When detecting SQL injection, this
determines how aggressive the testing is. In most cases, this should be set to High. If you set it to anything else,
anticipate some SQL expressions to get through. Be sure your code includes the proper neutralization code.

This enumerated type has these values:

o High – Suggested use: any field that never permits any SQL keyword.

This is the default setting for this property.

o MediumHigh – Suggested use: fields that allow short phrases or names with the occasional SQL keyword. For
example, city name, street address, and person’s name. Single line text that is usually short enough not to allow
useful SQL statements.

o Medium – Suggested use: single line free-form fields that do not exceed 100 characters. (The idea is short
entries without carriage returns.)

o MediumLow – Suggested use: multiline free-form fields that never include SQL statements.

o Low – Suggested use: multiline free-form fields that sometimes may have valid SQL statements.

All of these levels still look for a few common hacking patterns and will reject any term defined in the
<illegalsqlelements> section of the Peter’s Input Security configuration files. For more, see “What Each SQL
Detection Level Uses To Detect Attacks”.

If you need to allow SQL statements, disable detection of injection and neutralize the data.

 DetectScriptInjection (Boolean) – Use this to detect script injection attacks. It uses the HTML and Script Detection
Engine.

When true, detect script injection. It defaults to true.

Set it to false only if you fully neutralize the input and do not want to report an error when HTML and script oriented
expressions are supplied.

The Security Analysis Report may also recommend setting this to false because it finds other validators that will
protect your page. When enabled, Peter’s Input Security uses CPU intensive code to detect attacks. If you want to log
script injection attacks, set this to true because the Peter’s Data Entry Suite validators cannot log attacks.

Use the HTMLTagMode and HTMLTags properties to determine what tags are considered valid.

To learn more about and customize the SQL Detection Engine, see “About The HTML and Script Detection Engine”.

Note: Most characters are permitted by the HTML and Script Detection Engine. If you want to prevent them, use a
CharacterValidator from DES’s Validation Framework.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 159 of 277
http://www.PeterBlum.com

 HTMLTagMode (enum PeterBlum.DES.Security.HTMLTagMode) – When detecting script injection attacks, this
determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT - Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal - All tags found are illegal.

o AllLegal - All tags found are legal unless they are defined in the <illegaltags> section of the Peter’s
Input Security configuration files

o LegalExceptTags - All tags are legal except those defined in the HTMLTags property and in the
<illegaltags> section of the Peter’s Input Security configuration files.

o IllegalExceptTags - All tags are illegal except those in the HTMLTags property.

This is the default setting for this property.

 HTMLTags (string) – When detecting script injection attacks, this can contain a list of HTML tag names. The
HTMLTagMode determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example, when
looking for <a>,
 and use “a;br;img”.

Case insensitive testing is performed.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 160 of 277
http://www.PeterBlum.com

Communication Mode Properties
These SQLCommunicationMode and ScriptCommunicationMode properties can control logging and reporting errors
back to the user. They provide some unique ways to use the FieldSecurityValidator.

The enumerated type PeterBlum.DES.Security.CommunicationMode, used by these properties, has these values:

 Normal – Logs errors (attacks) and reports back to the user through the LogAndRespond Engine. If the
LogAndRespond Engine is not set up to redirect to another page or throw an exception, the validator will show its error
message and have its IsValid property set to false. This is the default.

 NoResponse – Logs attacks but allows the validator to act like nothing is wrong: report no errors and leave
Globals.Page.IsValid = true. Why do this? Because you will neutralize the data input anyway. So let all user entries in
and later review the database for any concerns. This prevents the hacker from knowing that he’s being tracked. All he
knows is that his injection attacks aren’t working. Also, it lets you learn how legitimate users enter text so you can tune
your SQL and Script detection rules.

When enabled and an attack is detected, the validator will never show an error message, its IsValid property will stay
true, and the LogAndRespond Engine will not redirect to a new page or throw an exception.

This allows you to let this software detect potential attacks but still record that data into the database. You can hand-
review these issues. Call LogDataInfo() to log the identity of the record written to the database.

WARNING: When this setting is used, you must neutralize the text from the field.

 NoLogging – Lets you use the validator without logging. It responds only by showing the error message on the
validator. Use this when you want the validator to block incorrect input but not treat the user as a hacker. For example,
you want to prevent entry of certain HTML tags and want to tell the user when they have entered an illegal tag.

 MinorErrorsShowErrorMsg – Only uses the LogAndRespond Engine to log and respond when an error is severe.
Errors that are not considered severe are not logged and the validator will show its error message. This lets you assist
your users with a friendly error message in the validator unless they do something very aggressive.

You can see each error code and its severity in the [DES Product Folder]\Input Security\ErrorCodes.txt file. You
can customize the severity when the application starts by calling
PeterBlum.DES.Security.Globals.CustomizeErrorSeverity() like this:

PeterBlum.DES.Security.Globals.CustomizeErrorSeverity(errorcode, severe)

where errorcode is an integer error code and severe is a boolean (true=severe;false=minor)

By default, severe errors fall into these categories:

o For SQL injection, text contains an item in <illegalsqlelements>. When a textual pattern could be a
sentence, it is not considered severe.

o For Script injection, text contains an item in <illegaltags>, <illegalattributes>, or
<illegalattributecontents>. When a tag is defined in the HTMLTags property of a validator, it is
not considered severe.

o Your custom regular expressions in <customscriptexpressions> or <customsqlexpressions>.

 MinorErrorsNoResponse – Uses the LogAndRespond Engine to log all errors.

When errors are severe, it will use the LogAndRespond Engine to respond. This includes redirecting to another page or
throwing an exception. (Just like the Normal mode setting.)

When errors are minor, they will not be reported in any way. There will be no error message and its IsValid property
will stay true. (Just like the NoResponse mode setting.) This allows you to let this software detect potential attacks
but still record that data into the database. You can hand-review these issues. Call LogDataInfo() to log the identity
of the record written to the database.

 SQLCommunicationMode (enum PeterBlum.DES.Security.CommunicationMode) – Determines if a SQL injection
attack is reported back to the user and logged within the LogAndRespond Engine. See the section introduction for
details.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 161 of 277
http://www.PeterBlum.com

When used, it is important that the text from the field is neutralized “Neutralizing SQL Injection”.

It defaults to Normal.

 ScriptCommunicationMode (enum PeterBlum.DES.Security.CommunicationMode) – Determines if a script injection
attack is reported back to the user and logged within the LogAndRespond Engine. See the section introduction for
details.

When used, it is important that the text from the field is neutralized “Neutralizing Script Injection”.

It defaults to Normal.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 162 of 277
http://www.PeterBlum.com

Showing The Error Properties
These properties are from the DES base class. They display an error message when an attack is detected. The
LogAndRespond Engine may be set up to redirect to another page or throw an exception instead of these properties.

 ErrorMessage, ErrorMessageLookupID, SummaryErrorMessage, SummaryErrorMessageLookupID (String) –
These properties supply error messages at the location of the validator control and within the ValidationSummary
control.

See “Defining the Error Message and Associated Labels” in the Validation User’s Guide.

 ErrorFormatter – Customize the appearance of the error message when shown on the page.

See “ErrorFormatters: Customizing the Appearance of the Error Message” in the Validation User’s Guide.

 HiliteFields – Customize the label and related fields in response to an error.

See “Change the Style of Other Fields Nearby the Error” in the Validation User’s Guide.

 SQLAttackResults (PeterBlum.DES.Security.AttackResults) – After validation, this indicates the AttackResults object
describing any SQL injection attack. If there was no SQL injection attack, this is null/nothing.

Usually you will check this in your post back event handler code, after the page has been validated.

 ScriptAttackResults (PeterBlum.DES.Security.AttackResults) – After validation, this indicates the AttackResults object
describing any script injection attack. If there was no script injection attack, this is null/nothing.

Usually you will check this in your post back event handler code, after the page has been validated.

 AttackDetected (boolean) – When true, either a SQL or script injection attack was detected.

While the IsValid property seems to do the same thing, you can override it with the SQLCommunicationMode and
ScriptCommunicationMode properties so that IsValid remains true while this is false.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 163 of 277
http://www.PeterBlum.com

Changing When the Validator is Evaluated Properties
These properties are from the DES base class. They should be used very carefully to be sure that the FieldSecurityValidator
is enabled every time the data associated with it is used.

 Group

 Enabler

See “Changing When the Validator is Evaluated” in the Validation User’s Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 164 of 277
http://www.PeterBlum.com

Properties From the Base Class That Should Not Be Used
FieldSecurityValidator is subclassed from PeterBlum.DES.BaseAnyValidator. There are a number of properties that either do
not apply or are not recommended to be used. Where possible, the following properties have been hidden from the Properties
Editor. However, they remain available programmatically. Do not use them.

 NotCondition

 CustomEvalFunctionName

 OverrideClientSideCondition

 EnableClientScript

 EventsThatValidate

 Trim

 ExtraControlsToRunThisAction

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 165 of 277
http://www.PeterBlum.com

Methods of FieldSecurityValidator

LogDataInfo Method
When an attack is detected and permitted to be written, use this to log info about the record that was written to the database
containing the results of that attack. It writes an entry to the logs using LogAndRespond.TrackError() with the error
code from SQLAttackResults and ScriptAttackResults.

It does nothing if no attack was recorded.

Use LogDataInfo() when SQLCommunicationMode or ScriptCommunicationMode are set to NoResponse or
MinorErrorsNoResponse. Call it after you save your data so that you have some identity to its location, such as a
primary key, file name, or offset into a file.

Suppose a script injection attack was detected and due to ScriptCommunicationMode = NoResponse, the data was
written to record 5356 of the Book table. Use LogDataInfo() to state that there is an error in record 5356 of the Book
table. It is up to the user to develop the text that describes the location.

Note: LogDataInfo will use LogAndRespond.TrackError() with a customized TrackErrorArgs object where
EnableLogging=true, RedirectUrl="" and ExceptionText="".

[C#]

public void LogDataInfo(string pLocation)

[VB]

Public Sub LogDataInfo(ByVal pLocation As String)

Parameters

pLocation

A description of the location where the data was written so that it can be tracked down for further evaluation.
Recommendation: identify the table and primary key of a record in a database.

Example

A textbox has a FieldSecurityValidator detecting SQL and script injection but not blocking them due to the
CommunicationMode properties both set to NoResponse. The TextBox’s data was written to the table Books using a
System.Data.SqlClient.SQLCommand object which is assumed to call a stored procedure that returns the identity
record ID.

[C#]

int vRecordID = vSQLCommand.ExecuteNonQuery();
FieldSecurityValidator1.LogDataInfo("Table: Books; RecordID:" +
 vRecordID.ToString());

[VB]

Dim vRecordID As Integer = vSQLCommand.ExecuteNonQuery()
FieldSecurityValidator1.LogDataInfo("Table: Books; RecordID:" + _
 vRecordID.ToString())

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 166 of 277
http://www.PeterBlum.com

The TextLengthSecurityValidator
The TextLengthSecurityValidator is a replacement for DES’s TextLengthValidator that understands the issues of cleaning up
text. When text is cleaned up, the length often increases. While the normal TextLengthValidator can describe that the text
length has been exceeded by a specific number of characters, the cleaned up text makes it very difficult to tell the user how
many characters to remove. The TextLengthSecurityValidator provides a second ErrorMessage property that is used when
the text length is exceeded because of the clean up process.

This validator offers properties to define how to clean up. When you want to retrieve cleaned up text, use its
CleanupInput() method instead similar methods on PageSecurityValidator: CleanupInput(),
CleanupInputEncodeInvalidTags(), CleanupInputRemoveInvalidTags(). It handles all of these cases
through property settings and is optimized to clean up only the first time the method is called.

TextLengthSecurityValidator is subclassed from PeterBlum.DES.TextLengthValidator. It inherits both the client
and server-side validation from its ancestor. So its ErrorMessage property supports tokens to show the current count
({COUNT}), number of characters exceeded ({EXCEEDS}), minimum ({MINIMUM}) and maximum ({MAXIMUM}). It
introduces the ErrorMessage2 property to report that the cleaned up text exceeded the maximum length.

Click on any of these topics to jump to them:

 The TextLengthSecurityValidator, An Overview

 TextLengthSecurityValidator Properties

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 167 of 277
http://www.PeterBlum.com

TextLengthSecurityValidator Properties
TextLengthSecurityValidator is subclassed from PeterBlum.DES.TextLengthValidator. It inherits the properties
and methods of its ancestor.

Click on any of these topics to jump to them:

 Control To Evaluate Properties

 Detecting The Length Properties

 Showing The Error Properties

 Changing When the Validator is Evaluated Properties

 Other Properties

 Getting the Cleaned Up Value

Control To Evaluate Properties
 ControlIDToEvaluate (string) – Identifies the data entry control that will be evaluated. This property takes the ID of the

control. It must be assigned unless you are using the ControlToEvaluate property.

An exception is thrown at runtime when this is blank, unknown, not in the same or ancestor naming container, is
Visible=false, or a control class that is not supported.

 ControlToEvaluate (System.Web.UI.Control) – An alternative to ControlIDToEvaluate. Use it when the data entry
control is not in the same or ancestor naming container. It must be assigned programmatically. For example, if you have
a validator instance in the variable “Val1” and a textbox instance in the variable “TextBox1”, write code like this:
Val1.ControlToEvaluate = TextBox1.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 168 of 277
http://www.PeterBlum.com

Detecting The Length Properties
 Minimum (Integer) – The minimum number of characters in the textbox. When it is 0, there is no minimum. It defaults

to 0.

 Maximum (Integer) – The maximum number of characters in the textbox. When it is 0, there is no maximum. It defaults
to 0.

 CleanupSQL (Boolean) – When true, it cleans up text from SQL injection by converting single quotes to a pair of
single quotes and by removing pairs of minus characters, representing a SQL comment (--).

Only use this with ad-hoc SQL statements. When using parameterized SQL statements and stored procs, leave this
false. See “Neutralizing SQL Injection”.

It defaults to true.

WARNING: When you maintain ad-hoc statements, you must replace single quotes with a pair of single quotes, even
when the SQLDetectionLevel is High.

 CleanupScript (Boolean) – When true, it cleans up text from script injection by using HTML encoding. If the
ValidHTMLTags property is also setup, it will leave tags defined in ValidHTMLTags unencoded unless they have
illegal attributes or attribute contents.

HTML encoding is effective in neutralizing script injection. See “Neutralizing Script Injection”.

It defaults to true.

 ValidHTMLTags (String) – When CleanupScript is true, this is used to preserve certain HTML tags in their
unencoded form. All of the rest of the tags are HTML encoded or removed, based on the CleanupTagRule property.

Enter a semicolon-delimited list of tag names. Do not include <, >, or space characters. For example, to use <a>,
,
and , use "a;br;img". A case insensitive match is used.

When "", no tags are considered valid and the entire text is encoded.

 CleanupTagRule (enum PeterBlum.DES.Security.CleanupTagRule) – When CleanupScript is true and
ValidHTMLTags has been assigned, this determines what happens to any invalid HTML tags found during cleanup.
The enumerated type has these values:

o EncodeTag – Invalid tags are HTML encoded.

o RemoveTag – Invalid tags are removed.

Hint: If you want to remove all tags, set ValidHTMLTags to an invalid HTML tag like “abc”. Set CleanupTagRule to
Remove.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 169 of 277
http://www.PeterBlum.com

Showing The Error Properties
These properties are from the DES base class. They display an error message when the maximum length is exceeded.

 ErrorMessage2 (String) – An error message that appears when the cleaned up text exceeds the maximum while the
original text length did not. The ErrorMessage property (see below) is shown when the cleaned up text is the same as
the original text.

Suppose the Maximum is 10 and the user enters “12345678901”. After cleaning it up, the text does not change. The
ErrorMessage property is used and may include the {COUNT} and {EXCEEDS} tokens to tell the user “You entered
11 characters. Please reduce it by 1.”

Suppose the user enters “123<5678901”. The original length is 11. When cleaned up, the < character is HTML
encoded to “<”. The cleaned up text becomes “123<5678901” with a length of 14. The challenge is to
describe the error without telling the user how many characters to remove.

ErrorMessage2 should be a general statement that the size is too large without using the {COUNT} or {EXCEEDS}
tokens to determine the actual length. For example, “This text is too large. Please edit it.”

When ErrorMessage2 is displayed, this validator disables its client-side validation. If the page is posted back and the
error is resolved, client-side validation is restored.

When "", ErrorMessage is used for all situations. It defaults to "". It is recommended to assign this property.

 ErrorMessage2LookupID (string) – Gets the value for ErrorMessage2 through the String Lookup System. (See
“String Lookup System” in the General Features Guide.) The LookupID and its value should be defined within the
String Group of ErrorMessages. If no match is found OR this is blank, ErrorMessage2 will be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 SummaryErrorMessage2 (String) – Supplies the error message to the ValidationSummary control associated with
ErrorMessage2. It will be used instead of SummaryErrorMessage when the cleaned up text exceeds the maximum
while the original text length did not.

When "", SummaryErrorMessage is used. It defaults to "".

 SummaryErrorMessage2LookupID (string) – Gets the value for SummaryErrorMessage2 through the String Lookup
System. (See “String Lookup System” in the General Features Guide.) The LookupID and its value should be
defined within the String Group of ErrorMessages. If no match is found OR this is blank, SummaryErrorMessage2 will
be used.

The String Lookup System lets you define a common set of terms so the programmer doesn't uniquely define them each
time. It also provides localization based on the current culture.

To use it, define a LookupID and associated textual value in your data source (resource, database, etc). Assign the same
LookupID to this property.

It defaults to "".

 ErrorMessage, ErrorMessageLookupID, SummaryErrorMessage, SummaryErrorMessageLookupID (String) –
These properties supply error messages at the location of the validator control and within the ValidationSummary
control.

See “Defining the Error Message and Associated Labels” in the Validation User’s Guide.

 ErrorFormatter – Customize the appearance of the error message when shown on the page.

See “ErrorFormatters: Customizing the Appearance of the Error Message” in the Validation User’s Guide.

 HiliteFields – Customize the label and related fields in response to an error.

See “Change the Style of Other Fields Nearby the Error” in the Validation User’s Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 170 of 277
http://www.PeterBlum.com

Changing When the Validator is Evaluated Properties
These properties are from the Peter’s Data Entry Suite base class. They should be used very carefully to be sure that the
TextLengthSecurityValidator is enabled every time the data associated with it is used.

 Group

 Enabler

See “Changing When the Validator is Evaluated” in the Validation User’s Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 171 of 277
http://www.PeterBlum.com

Other Properties
These properties are from the Peter’s Data Entry Suite base class. See the Validation User’s Guide for documentation.

 NotCondition

 CustomEvalFunctionName

 OverrideClientSideCondition

 EnableClientScript

 EventsThatValidate

 Trim

 ExtraControlsToRunThisAction

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 172 of 277
http://www.PeterBlum.com

Getting the Cleaned Up Value Property and Method
When you use the TextLengthSecurityValidator, you can use its own cleaned-up text value instead of using the methods of
the PageSecurityValidator. This validator provides both a property and method to return the text.

 CleanedupText (String) – This property returns the cleaned up text associated with this validator and its
ControlToEvaluate. It follows the rules from these properties: CleanupSQL, CleanupScript, ValidHTMLTags, and
CleanupTagRule. It does not record anything into the Security Analysis Report.

 CleanupInput() – This method is a wrapper around CleanedupText that also records that the text was neutralized
from script injection attacks within the Security Analysis Report. See below.

CleanupInput Method

The CleanupInput() method returns the cleaned up text associated with this validator and its ControlToEvaluate. It
follows the rules from these properties: CleanupSQL, CleanupScript, ValidHTMLTags, and CleanupTagRule.

When CleanupScript is true, this records that the script was neutralized in the Security Analysis Report. If you supply a
comment, it is used. Otherwise, a default is applied.

When CleanupSQL is true, it is used with ad-hoc statements, which are not recommended. So the Security Analysis
Report does not indicate that the input is neutralized. See “Neutralizing SQL Injection”.

Note: The cleaned up text length may exceed the Maximum. The TextLengthSecurityValidator will set IsValid=false if that is
the case.

This method is optimized. It cleans the text up once and returns a copy after that.

[C#]

public string CleanupInput(string pComment)

[VB]

Public Function CleanupInput(ByVal pComment As String) As String

Parameters

pComment

Your comment. If "", it supplies a default comment identifying the TextLengthSecurityValidator and its technique to
clean up.

Return value

The cleaned up text

Example

[C#]

string vCleanText = TextLengthSecurityValidator1.CleanupInput("");

[VB]

Dim vCleanText As String = TextLengthSecurityValidator1.CleanupInput("")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 173 of 277
http://www.PeterBlum.com

The LogAndRespond Engine
The LogAndRespond Engine (class PeterBlum.DES.Security.LogAndRespond) provides you with information
about attacks, errors and exceptions while preventing the user from seeing those valuable details. Hackers use specifics
behind error message to make progress in their attack. You provide users with friendly, less specific errors through the
validator’s error message or the LogAndRespond class, which can redirect to another page or throw an exception.

For an overview, see “The LogAndRespond Engine, An Overview”.

You should have already set up the LogAndRespond class, as part of the setup. See the “Configure for Logging” section of
the Input Security Installation Guide. The set up involves the global features of the LogAndRespond class, which are
all set up in Global.asax. These features include:

 Logging to the Windows Event Log

 Logging to a text file

 Sending you emails

 Responding by redirecting to another page

 Responding by throwing an exception

 Defaults for logging and response when an attack occurs

 An event handler to override the defaults for logging and response when an attack occurs

 Defaults for logging and response when an error or exception occurs

 Using the Application_Error() to log unhandled exceptions

Click on any of these topics to jump to them:

 AttackDetails Class

 ChangeAttackInputTypeDescription Method

 ChangeAttackTypeDescription Method

 GetTrackAttackArgs Method

 GetTrackErrorArgs Method

 TrackAttackArgs Class

 TrackException Method That Does Not Get Passed Exception Object

 TrackException Method That Gets Passed An Exception Object

 TrackError Methods

 LogAndRespond Properties

 UseEventLog Method – Using Web.Config File Keys

 UseEventLog Method – Pass an System.Diagnostics.EventLog object

 UseLogFile Method – Using Web.Config File Keys

 UseLogFile Method – Pass a File Path

Features Not In Global.asax

 Track exceptions on the page in the Page.Error event

 Track exceptions in your own Try.. Catch code

 Track errors of your own invention

 Track attacks from your own detection code

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 174 of 277
http://www.PeterBlum.com

Track exceptions on the page in the Page.Error event
Microsoft has provided the Error event handler on the Page and UserControl classes to intercept all unhandled exceptions
within a page or user control. (The Application_Error() method in Global.asax handles exceptions globally.)

You can set up the Error event handler to feed the exception into the LogAndRespond class using the
LogAndRespond.TrackException() method. Specify a URL to redirect to another page if desired.

TrackException Method That Does Not Get Passed Exception Object
This is an overloaded method. This form does not get passed an Exception object. The second form does get passed an
Exception object. See “Track exceptions in your own Try.. Catch code”.

[C#]

public void TrackException(
 string pRedirectURL,

 bool pStopException)

[VB]

Public Sub TrackException(_
 ByVal pRedirectURL As String, _

 ByVal pStopException As Boolean)

Parameters

pRedirectURL

Determines the URL to redirect to another page. Often you will use different URLs for different types of exceptions.
When "", the value from LogAndRespond.DefaultTrackErrorArgs.RedirectURL is used.

WARNING: It is important not to give the hacker any idea that there was a database exception. If you capture any
database exceptions, avoid naming the page file in a way that gives the hacker any insight. Even if the page name
differs from others, the hacker can tell that there was an error and that is enough to identify a hole in your security.

pStopException

Determines if the exception is stopped or passed back to show to the user. Set it to true to stop exceptions. This is
strongly recommended because the goal is to prevent showing the error. It calls
HttpContext.Current.Server.ClearError() to stop the exception.

This method does not get passed the Exception object. That’s because Page.Error does not supply one. Instead, it internally
gets the current exception through HttpContext.Current.Server.GetLastError(). You can also use that
method to help you customize the pRedirectURL parameter.

Note: If the exception is due to an unknown page URL that is called through Respond.Redirect() or Server.Transfer(),
internally TrackException() will detect this and use pRedirectURL="" and pStopException=false. It will still log the error.
This protects against an exception when you pass an unknown URL to pRedirectURL.

Example 1: Use the default RedirectURL

 [C#]

protected void Page_Error(Object sender, EventArgs e)
{
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException("", true);
}

[VB]

Protected Sub Page_Error(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Error
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException("", True)
End Sub

http://msdn2.microsoft.com/en-us/library/system.web.ui.templatecontrol.error.aspx�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassGetLastErrorTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 175 of 277
http://www.PeterBlum.com

Example 2: Customize the RedirectURL

When a System.IO.FileNotFoundException is intercepted, redirect to "/MyErrors/FileIOError.aspx”.

[C#]

protected void Page_Error(Object sender, EventArgs e)
{
 string vRedirectURL = ""; // default
 Exception vException = HttpContext.Current.Server.GetLastError();
 if (vException is System.IO.FileNotFoundException)
 vRedirectURL = "/MyErrors/FileIOError.aspx";
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(vRedirectURL, true);
}

[VB]

Protected Sub Page_Error(ByVal sender As Object, _
 ByVal e As EventArgs) Handles MyBase.Error
 Dim vRedirectURL As String = "" ' default
 Dim vException As Exception = HttpContext.Current.Server.GetLastError()
 If TypeOf vException Is System.IO.FileNotFoundException Then
 vRedirectURL = "/MyErrors/FileIOError.aspx"
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(vRedirectURL, True)
End Sub

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 176 of 277
http://www.PeterBlum.com

Track exceptions in your own Try.. Catch code
When you use the Exception handling statements Try and Catch, you can call the
LogAndRespond.TrackException() method within your Catch clause. Specify a URL to redirect to another page if
desired.

TrackException Method That Gets Passed An Exception Object
This is an overloaded method. This form gets passed an Exception object. The second form does not get passed an Exception
object. See “Track exceptions on the page in the Page.Error event”.

[C#]

public void TrackException(
 Exception pException,
 string pRedirectURL,

 bool pStopException)

[VB]

Public Sub TrackException(_
 ByVal pException As Exception, _
 ByVal pRedirectURL As String, _

 ByVal pStopException As Boolean)

Parameters

pException

The exception object.

If this is a PeterBlum.DES.Security.VISResponseException object, it will not be processed, allowing
the exception to continue back through the caller. (PeterBlum.DES.Security.VISResponseException
is throw by the LogAndRespond class when the response is to throw an exception.)

pRedirectURL

Determines the URL to redirect to another page. Often you will use different URLs for different types of exceptions.
When "", the value from LogAndRespond.DefaultTrackErrorArgs.RedirectURL is used.

WARNING: It is important not to give the hacker any idea that there was a database exception. If you capture any
database exceptions, avoid naming the page file in a way that gives the hacker any insight. Even if the page name
differs from others, the hacker can tell that there was an error and that is enough to identify a hole in your security.

pStopException

Determines if the exception is stopped or passed back to show to the user. Set it to true to stop exceptions. This is
strongly recommended because the goal is to prevent showing the error. It calls
HttpContext.Current.Server.ClearError() to stop the exception.

Note: If the exception is due to an unknown page URL that is called through Respond.Redirect() or Server.Transfer(),
internally TrackException() will detect this and use pRedirectURL="" and pStopException=false. It will still log the error.
This protects against an exception when you pass an unknown URL to pRedirectURL.

Example 1: Use the default RedirectURL

 [C#]

try
{
 DoSomething(); // sometimes throws an exception
}
catch (Exception e)
{
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(e, "", true)
}

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 177 of 277
http://www.PeterBlum.com

[VB]

Try
 DoSomething() ' sometimes throws an exception
Catch e As Exception
 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(e,"", True)
End Try

Example 2: Customize the RedirectURL

When a System.IO.FileNotFoundException is intercepted, redirect to "/MyErrors/FileIOError.aspx”.

[C#]

try
{
 DoSomething(); // sometimes throws an exception
}
catch (Exception e)
{
 string vRedirectURL = ""; // default
 if (e is System.IO.FileNotFoundException)
 vRedirectURL = "/MyErrors/FileIOError.aspx";

 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(e,
 vRedirectURL, true)
}

 [VB]

Try
 DoSomething() ' sometimes throws an exception
Catch e As Exception
 Dim vRedirectURL As String = "" ' default
 If TypeOf vException Is System.IO.FileNotFoundException Then
 vRedirectURL = "/MyErrors/FileIOError.aspx"

 PeterBlum.DES.Security.LogAndRespond.Current.TrackException(e,
 vRedirectURL, True)
End Try

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 178 of 277
http://www.PeterBlum.com

Track errors of your own invention
Most applications look for errors. They often throw exceptions in response, which aborts the current code block. Sometimes
you don’t want to abort, but want to record that the error happened. Use the LogAndRespond.TrackError() method to
log and potentially redirect to another page or throw an exception.

TrackError() takes two parameters: a description of the error and an error code. Always supply a description. If you
want to use error codes, you determine a numeric value for each code. When the error code is 0, it tells Peter’s Input Security
that you aren’t using the error code feature.

TrackError Methods
This is an overloaded method.

[C#]

public void TrackError(
 Page pPage,

 string pErrorDetails)

public void TrackError(
 Page pPage,

 string pErrorDetails,
 int pErrorCode)

public void TrackError(
 Page pPage,

 string pErrorDetails,
 int pErrorCode,
 PeterBlum.DES.Security.TrackErrorArgs pArgs)

 [VB]

Public Sub TrackError(_
 ByVal pPage As Page, _

 ByVal pErrorDetails As String)

Public Sub TrackError(_
 ByVal pPage As Page, _

 ByVal pErrorDetails As String,
 ByVal pErrorCode As Integer)

Public Sub TrackError(_
 ByVal pPage As Page, _

 ByVal pErrorDetails As String, _
 ByVal pErrorCode As Integer, _
 ByVal pArgs As PeterBlum.DES.Security.TrackErrorArgs)

Parameters

pPage

The Page object that is the source of this error.

pErrorDetails

A description of the error. It will appear in “{DETAILS}” tokens of TrackErrorArgs.LoggingText and
TrackErrorArgs.EmailBody strings.

pErrorCode

The user can define error code numbers to help classify the error messages. Treat 0 as "no error code supplied".
When non-zero, it replaces "{ERRORCODE}" tokens of TrackErrorArgs.LoggingText and
TrackErrorArgs.EmailBody strings.

When using a method without this parameter, the error code is 0.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 179 of 277
http://www.PeterBlum.com

pArgs

A PeterBlum.DES.Security.TrackErrorArgs object that describes log and response actions taken. Use
this parameter when you want to customize the actions taken by the LogAndRespond Engine. Use the
GetTrackErrorArgs() method to get an instance of this object, initialized to match the defaults that you
specified in LogAndRespond.Current.DefaultTrackErrorArgs. Customize that object and pass it to
TrackError().

When using TrackError() without this parameter, it uses LogAndRespond.Current.DefaultTrackErrorArgs.

Example 1: DefaultTrackErrorArgs

In this example, the user was supposed to define the key “MyFilePath” in the <appSettings> section of the web.config
file. The program was built to continue even with this parameter missing as it’s a non-fatal error. But the programmer wants
to be informed to fix the error. He specified the error code of 10 for this situation.

[C#]

string vFilePath = ConfigurationSettings.AppSettings["MyFilePath"];
if (vFilePath != null)
{
 // use vFilePath
}
else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(this.Page,
 "Forgot to define the MyFilePath key in web.config", 10);

[VB]

Dim vFilePath As String = ConfigurationSettings.AppSettings("MyFilePath")
If Not vFilePath Is Nothing Then
 ' use vFilePath
Else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(Me.Page, _
 "Forgot to define the MyFilePath key in web.config", 10)

End If

Example 2: Customized TrackErrorArgs

This example is based on the previous one. It uses the pArgs parameter to send an email to the web master.

[C#]

string vFilePath = ConfigurationSettings.AppSettings["MyFilePath"];
if (vFilePath != null)
{
 // use vFilePath
}
else
{
 PeterBlum.DES.Security.TrackErrorArgs vArgs =
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackErrorArgs(true);
 vArgs.EnableEmail = true;
 vArgs.EmailTo = "WebMaster@MyDomain.com";
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(this.Page,
 "Forgot to define the MyFilePath key in web.config", 10, vArgs);
}

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 180 of 277
http://www.PeterBlum.com

[VB]

Dim vFilePath As String = ConfigurationSettings.AppSettings("MyFilePath")
If Not vFilePath Is Nothing Then
 ' use vFilePath
Else
 Dim vArgs As PeterBlum.DES.Security.TrackErrorArgs = _
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackErrorArgs(True)
 vArgs.EnableEmail = True
 vArgs.EmailTo = "WebMaster@MyDomain.com"
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(Me.Page, _
 "Forgot to define the MyFilePath key in web.config", 10, vArgs)
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 181 of 277
http://www.PeterBlum.com

TrackErrorArgs Class
PeterBlum.DES.Security.TrackErrorArgs tells the LogAndRespond class what actions to take. It can enable
logging, emailing, throwing an exception, and redirecting to another page.

This object is used by the TrackError() method. There are two forms of that method. One does not get passed an
instance of TrackAttackArgs. It uses the LogAndRespond.DefaultTrackErrorArgs property which is a global instance of
this class.

Create your own instance when you want to use different settings from LogAndRespond.DefaultTrackErrorArgs in
TrackError(). To create your own, call LogAndRespond.GetTrackErrorArgs(). It will initialize the object
using LogAndRespond.DefaultTrackErrorArgs. Pass it into the third parameter of the TrackError() method.

TrackErrorArgs Properties

 EnableLogging (boolean) – When true, logging is used. You still must set up other properties to determine how errors
will be logged. There are two types of logging available: the Windows Event Log and text file. It defaults to false.

 LoggingText (string) – The text to write to either the Windows Event Log or text file. It supports tokens that are
replaced by actual information about the error. The tokens are as follows:

o {IP} – IP address from Request.ServerVariables["REMOTE_ADDR"]. If ServerVariables identifies a proxy
server through the HTTP_VIA and HTTP_X_FORWARDED_FOR variables, they are also embedded into this
information using the format:

REMOTE_ADDR HTTP_VIA=HTTP_VIA HTTP_X_FORWARDED_FOR=HTTP_X_FORWARDED_FOR

210.123.45.1 HTTP_VIA=210.123.45.1 HTTP_X_FORWARDED_FOR=210.123.45.6

For more information on proxy servers and ways hackers can hide behind them, see
http://www.stayinvisible.com/index.pl/anonymity_of_proxy.

o {USERAGENT} – The User Agent describing the browser from
Request.ServerVariables["HTTP_USER_AGENT"].

o {USER} – Logged in user from Context.User.Identity.Name

o {URL} – Complete URL from Request.Url

o {DETAILS} – The text of the error message. When you record an error, you supply this text. When there is an
exception, LogAndRespond.TrackException() builds this text from the Exception object.

o {ERRORCODE} – An error code number that you can supply. You define your own error codes. When the
error code is 0, this appears as “n/a”.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “IP Address: {IP}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\nError Code: {ERRORCODE}\n{DETAILS}”

 EnableEmail (boolean) – When true, emailing notices of errors is enabled. You must have an SMTP Server set up and
accessible to the System.Web.Mail.SmtpMail object (ASP.NET 1.x) or System.Net.Mail.SmtpClient
object (ASP.NET 2 and higher). It defaults to false.

 EmailFrom (string) – The email address to appear in the From: line of an email. Only one is permitted and it must be a
valid format.

 EmailTo (string) – The email addresses to appear in the To: line of an email. Use a semicolon-delimited list for multiple
addresses. For example: “Jon@mydomain.com;Laura@mydomain.com”

 EmailSubject (string) – The email subject line. It defaults to: “An error has been recorded in your web application”

 EmailBody (string) – The body of the email. It supports the same tokens as shown in the LoggingText property.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

http://www.stayinvisible.com/index.pl/anonymity_of_proxy�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 182 of 277
http://www.PeterBlum.com

This property defaults to: “IP Address: {IP}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\nError Code: {ERRORCODE}\n{DETAILS}”

 RedirectURL (string) – The URL to a page that should appear when an error is detected. When "", redirection is
disabled. It defaults to "".

 ExceptionText (string) – When assigned and RedirectURL is not assigned, throw a
PeterBlum.DES.Security.SecurityResponseException with this property’s text as the message.

Note: This property is not used when handling an exception through LogAndRespond.TrackException().

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 183 of 277
http://www.PeterBlum.com

Track attacks from your own detection code
If you create new logic to detect attacks, you can use the LogAndRespond.TrackAttack() method to log and respond.
This is the same method used internally by the Peter’s Input Security validators.

TrackAttack Methods
This is an overloaded method.

[C#]

public void TrackAttack(
 Page pPage,
 PeterBlum.DES.Security.AttackDetails pAttackDetails)

public void TrackAttack(
 Page pPage,
 PeterBlum.DES.Security.AttackDetails pAttackDetails,
 PeterBlum.DES.Security.TrackAttackArgs pArgs)

 [VB]

Public Sub TrackAttack(
 ByVal pPage As Page,
 ByVal pAttackDetails As PeterBlum.DES.Security.AttackDetails)

Public Sub TrackAttack(
 ByVal pPage As Page,
 ByVal pAttackDetails As PeterBlum.DES.Security.AttackDetails,
 ByVal pArgs As PeterBlum.DES.Security.TrackAttackArgs)

Parameters

pPage

The Page object that is the source of this error.

pAttackDetails

A PeterBlum.DES.Security.AttackDetails object that describes the attack in great detail. It includes
the type of attack, the type of input affected, a description of the error and more.

Create the PeterBlum.DES.Security.AttackDetails object, assigning its various properties through its
constructor. There are several constructors to choose from.

For example, this detects a script injection attack in the query string parameter “name”.

new AttackDetails(PeterBlum.DES.Security.AttackType.ScriptInjection,
 PeterBlum.DES.Security.AttackInputType.QueryString,
 "name", Request.QueryString["name"],
 "A illegal tag was found.", 0)

pArgs

A PeterBlum.DES.Security.TrackAttackArgs object that describes log and response actions taken. Use
this parameter when you want to customize the actions taken by the LogAndRespond Engine. Use the
GetTrackAttackArgs() method to get an instance of this object, initialized to match the defaults that you
specified in LogAndRespond.Current.DefaultTrackAttackArgs. Customize that object and pass it to
TrackAttack().

When using TrackAttack() without this parameter or you pass in null/nothing, it uses
4LogAndRespond.Current.DefaultTrackAttackArgs.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 184 of 277
http://www.PeterBlum.com

Example 1: Using DefaultTrackAttackArgs

In this example, the LoginID query string parameter is checked against the authorization rights before permitting the page to
be shown. The user has developed a custom method to validate rights. It returns false if invalid rights were found.

[C#]

string vLoginID = Request.QueryString["LoginID"];
if (ValidateLogic(vLoginID))
{
 // create the page
}
else
{
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(
 this.Page,
 new AttackDetails(
 PeterBlum.DES.Security.AttackType.IllegalValue,
 PeterBlum.DES.Security.AttackInputType.QueryString,
 "LoginID", vLoginID, // fieldID and value
 "Attempt to circumvent authorization", 0)); // error descrip. & code
}

[VB]

Dim vLoginID As String = Request.QueryString("LoginID")
If ValidateLogic(vLoginID) Then
 ' create the page
Else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(_
 Me.Page, _
 new AttackDetails(_
 PeterBlum.DES.Security.AttackType.IllegalValue, _
 PeterBlum.DES.Security.AttackInputType.QueryString, _
 "LoginID", vLoginID, _ ' fieldID and value
 "Attempt to circumvent authorization", 0)) ' error descrip. & code
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 185 of 277
http://www.PeterBlum.com

Example 2: Custom TrackAttackArgs

This example is based on the previous one. It redirects to a different page than the
LogAndRespond.Current.DefaultTrackAttackArgs uses.

[C#]

string vLoginID = Request.QueryString["LoginID"];
if (ValidateLogic(vLoginID))
{
 // create the page
}
else
{
 PeterBlum.DES.Security.TrackAttackArgs vArgs =
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(true);
 vArgs.RedirectUrl = "UnknownLogin.aspx";

 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(
 this.Page,
 new AttackDetails(
 PeterBlum.DES.Security.AttackType.IllegalValue,
 PeterBlum.DES.Security.AttackInputType.QueryString,
 "LoginID", vLoginID, // fieldID and value
 "Attempt to circumvent authorization", 0), // error descrip. & code
 vArgs);
}

[VB]

Dim vLoginID As String = Request.QueryString("LoginID")
If ValidateLogic(vLoginID) Then
 ' create the page
Else
 Dim vArgs As PeterBlum.DES.Security.TrackAttackArgs = _
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(True)
 vArgs.RedirectUrl = "UnknownLogin.aspx"

 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(_
 Me.Page, _
 new AttackDetails(_
 PeterBlum.DES.Security.AttackType.IllegalValue, _
 PeterBlum.DES.Security.AttackInputType.QueryString, _
 "LoginID", vLoginID, _ ' fieldID and value
 "Attempt to circumvent authorization", 0), _ ' error descrip. & code
 vArgs)
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 186 of 277
http://www.PeterBlum.com

AttackDetails Class
Create a PeterBlum.DES.Security.AttackDetails object to pass into the second parameter of the
TrackAttack() method (see above). It extensively documents the attack, including where it occurred, its type, and a
description of the error. Normally you don’t interact with the properties of AttackDetails. You simply choose one of
these constructors, shown below, to set up its properties.

This class has been designed to allow expansion with new types of attacks and areas of input. It has two enumerated types,
PeterBlum.DES.Security.AttackType and PeterBlum.DES.Security.AttackInputType, both which
have many more items than Peter’s Input Security uses. They are given the values Other1, Other2, etc. You should use
these values if you identify a new form of input or attack. You can even supply custom description strings for them with the
LogAndRespond.ChangeAttackTypeDescription() and
LogAndRespond.ChangeAttackInputTypeDescription() methods.

The following are the available constructors for the AttackDetails class:

 [C#]

public AttackDetails(
 PeterBlum.DES.Security.AttackType pAttackType,
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pFieldID,
 string pData)

public AttackDetails(
 PeterBlum.DES.Security.AttackType pAttackType,
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pFieldID,
 string pData,
 string pErrorDetails,

 int pErrorCode)

public AttackDetails(
 PeterBlum.DES.Security.AttackType pAttackType,
 string pAttackTypeDescription,
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pAttackInputTypeDescription,
 string pFieldID,
 string pData,
 string pErrorDetails,
 int pErrorCode)

public AttackDetails(
 PeterBlum.DES.Security.AttackType pAttackType,
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pFieldID,
 string pData,
 PeterBlum.DES.Security.AttackResults pAttackResults)

public AttackDetails(
 PeterBlum.DES.Security.AttackType pAttackType,
 string pAttackTypeDescription,
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pAttackInputTypeDescription,
 string pFieldID,
 string pData,
 PeterBlum.DES.Security.AttackResults pAttackResults)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 187 of 277
http://www.PeterBlum.com

 [VB]

Public New AttackDetails(
 ByVal pAttackType As PeterBlum.DES.Security.AttackType,
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType,
 ByVal pFieldID As String,
 ByVal pData As String)

Public New AttackDetails(
 ByVal pAttackType As PeterBlum.DES.Security.AttackType,
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType,
 ByVal pFieldID As String,
 ByVal pData As String,
 ByVal pErrorDetails As String,
 ByVal pErrorCode As Integer)

Public New AttackDetails(
 ByVal pAttackType As PeterBlum.DES.Security.AttackType,
 ByVal pAttackTypeDescription As String,
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType,
 ByVal pAttackInputTypeDescription As String,
 ByVal pFieldID As String,
 ByVal pData As String,
 ByVal pErrorDetails As String,
 ByVal pErrorCode As Integer)

Public New AttackDetails(
 ByVal pAttackType As PeterBlum.DES.Security.AttackType,
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType,
 ByVal pFieldID As String,
 ByVal pData As String,
 ByVal pAttackResults As PeterBlum.DES.Security.AttackResults)

Public New AttackDetails(
 ByVal pAttackType As PeterBlum.DES.Security.AttackType,
 ByVal pAttackTypeDescription As String,
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType,
 ByVal pAttackInputTypeDescription As String,
 ByVal pFieldID As String,
 ByVal pData As String,
 ByVal pAttackResults As PeterBlum.DES.Security.AttackResults)

Parameters

pAttackType

The type of offense to be recorded. The enumerated type PeterBlum.DES.Security.AttackType has these
values:

o Unknown

o SQLInjection

o ScriptInjection.

o IllegalValue – Generated by most cases of tampering.

o Other1 through Other10 – For you to declare your own attack types. You select one of the 10 “Other”
entries and use it for any type of error you like.

pAttackTypeDescription

A description for pAttackType that will appear in the “{ATTACKTYPE}” token of TrackAttackArgs.LoggingText
and TrackAttackArgs.EmailBody strings. Leave it "" if you want to use the default description.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 188 of 277
http://www.PeterBlum.com

You can customize the default description for each attack type with the
LogAndRespond.ChangeAttackTypeDescription() method.

When the constructor omits this parameter, the default description is used.

pAttackInputType

The type of input to be recorded. The enumerated type PeterBlum.DES.Security.AttackInputType has
these values:

o Unknown

o Field

o HiddenField

o QueryString

o Cookie

o Other1 through Other10 – For you to declare your own input types. You select one of the 10 “Other”
entries and use it for any type of error you like.

pAttackInputTypeDescription

A description for pAttackInputType that will appear in the “{INPUTTYPE}” token of
TrackAttackArgs.LoggingText and TrackAttackArgs.EmailBody strings. Leave it "" if you want to use the
default description.

You can customize the default description for each input type with the
LogAndRespond.ChangeAttackInputTypeDescription() method.

When the constructor omits this parameter, the default description is used.

pFieldID

The ID or name of the field, hidden field or query string parameter. It will appear in the “{FIELD}” token of
TrackAttackArgs.LoggingText and TrackAttackArgs.EmailBody strings.

If using pAttackInputType = Unknown or Other#, you can either create a descriptive value or provide "".

pData

The text that was parsed and found to contain the offending information. Pass null/nothing to ignore this data.
This text is placed into the “{DATA}” token of TrackAttackArgs.LoggingText and
TrackAttackArgs.EmailBody strings.

pErrorDetails

A description of the error. It will appear in “{DETAILS}” tokens of TrackAttackArgs.LoggingText and
TrackAttackArgs.EmailBody strings. While very useful, you can pass an empty string.

When the constructor omits this parameter, an empty string is used.

pErrorCode

An error code associated with the error. You can define the error codes. A value of 0 means no error code was
assigned. Peter’s Input Security uses the range 1 – 2999 for SQL Injection, script injection and input tampering
codes. You can see the codes already defined in the [DES Product Folder]\Input Security\ErrorCodes.txt
file.

When the constructor omits this parameter, a value of 0 is used.

pAttackResults

The PeterBlum.DES.Security.AttackResults object is returned by FindSQLInjection() and
FindScriptInjection(). It contains the error message and error code.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 189 of 277
http://www.PeterBlum.com

TrackAttackArgs Class
PeterBlum.DES.Security.TrackAttackArgs tells the LogAndRespond class what actions to take. It can enable
logging, emailing, throwing an exception, and redirecting to another page.

This object is used by the TrackAttack() method. There are two forms of that method. One does not get passed an
instance of TrackAttackArgs. It uses the LogAndRespond.DefaultTrackAttackArgs property which is a global instance of
this class.

Create your own instance when you want to use different settings from LogAndRespond.DefaultTrackAttackArgs in
TrackAttack(). To create your own, call LogAndRespond.GetTrackAttackArgs(). It will initialize the object
using LogAndRespond.DefaultTrackAttackArgs. Pass it into the third parameter of the TrackAttack() method.

TrackAttackArgs Properties

 EnableLogging (boolean) – When true, logging is used. You still must set up other properties to determine how
attacks will be logged. There are two types of logging available: the Windows Event Log and text file. It defaults to
false.

 LoggingText (string) – The text to write to either the Windows Event Log or text file. It supports tokens that are
replaced by actual information about the attack. The tokens are as follows:

o {IP} – IP address from Request.ServerVariables["REMOTE_ADDR"]. If ServerVariables identifies a proxy
server through the HTTP_VIA and HTTP_X_FORWARDED_FOR variables, they are also embedded into this
information using the format:

REMOTE_ADDR HTTP_VIA=HTTP_VIA HTTP_X_FORWARDED_FOR=HTTP_X_FORWARDED_FOR

210.123.45.1 HTTP_VIA=210.123.45.1 HTTP_X_FORWARDED_FOR=210.123.45.6

For more information on proxy servers and ways hackers can hide behind them, see
http://www.stayinvisible.com/index.pl/anonymity_of_proxy.

o {IPTOTAL} - Total attacks recorded for this IP Address since the web app was started.

Note: IP Addresses may reflect a number of users hidden behind a proxy server.

o {USERAGENT} – The User Agent describing the browser from
Request.ServerVariables["HTTP_USER_AGENT"].

o {USER} – Logged in user from Context.User.Identity.Name

o {URL} – Complete URL from Request.Url

o {ATTACKTYPE} – The type of attack detected: SQL injection, script injection, or IllegalValue.

o {FIELD} – ID to the field, cookie or query string parameter that caused this error.

o {INPUTTYPE} – The type of input attacked: Field, Hidden Field, Cookie, or QueryString.

o {DETAILS} – A specific description of what was considered an attack.

o {ERRORCODE} – An error code number associated with the description.

o {DATA} - The text that the user (hacker) entered.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “{ATTACKTYPE}\nIP Address: {IP} Total attacks from this
address since app started: {IPTOTAL}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\n{INPUTTYPE}: {FIELD}\nError Code: {ERRORCODE}\nError
Details: {DETAILS}\nOffending Text:\n{DATA}”

 EnableEmail (boolean) – When true, emailing notices of attacks is enabled. You must have an SMTP Server set up
and accessible to the System.Web.Mail.SmtpMail object (ASP.NET 1.x) or
System.Net.Mail.SmtpClient object (ASP.NET 2.0). It defaults to false.

http://www.stayinvisible.com/index.pl/anonymity_of_proxy�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebmailsmtpmailclasstopic.asp�
http://msdn2.microsoft.com/library/4971yhhc(en-us,vs.80).aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 190 of 277
http://www.PeterBlum.com

 EmailFrom (string) – The email address to appear in the From: line of an email. Only one is permitted and it must be a
valid format.

 EmailTo (string) – The email addresses to appear in the To: line of an email. Use a semicolon-delimited list for multiple
addresses. For example: “Jon@mydomain.com;Laura@mydomain.com”

 EmailSubject (string) – The email subject line. It defaults to: “Input validation detected a possible
attack”

 EmailBody (string) – The body of the email. It supports the same tokens as shown in the LoggingText property.

Use the text “\n” to indicate a newline character. While this is C# syntax, VB.net users should use this syntax too.

This property defaults to: “{ATTACKTYPE}\nIP Address: {IP} Total attacks from this
address since app started: {IPTOTAL}\nUser Agent: {USERAGENT}\nSite User:
{USER}\nURL: {URL}\n{INPUTTYPE}: {FIELD}\nError Code: {ERRORCODE}\nError
Details: {DETAILS}\nOffending Text:\n{DATA}”

 RedirectURL (string) – The URL to a page that should appear when an attack is detected. When "", redirection is
disabled. It defaults to "".

 ExceptionText (string) – When assigned and RedirectURL is not assigned, throw a
PeterBlum.DES.Security.SecurityResponseException with this property’s text as the message.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 191 of 277
http://www.PeterBlum.com

LogAndRespond Properties
Each of the following properties can be referenced on the global instance of LogAndRespond through
PeterBlum.DES.Security.LogAndRespond.Current. (See below.)

Access the Global LogAndRespond Instance
 Current (PeterBlum.DES.Security.LogAndRespond) – Gets the global instance of LogAndRespond. Use this property to

access all properties and methods of the global instance.

If you subclass LogAndRespond, you can create your own instance in Application_Start() and assign it to this
property.

Configure LogAndRespond
These properties must be set up within the Application_Start() method. See the “Configure for Logging” section of
the Input Security Installation Guide.

 DefaultTrackAttackArgs (PeterBlum.DES.Security.TrackAttackArgs) – An instance of TrackAttackArgs that supplies
default properties to each TrackAttackArgs object used by the LogAndRespond.TrackAttack() methods.

Only modify this as the application starts up. If you want to use a TrackAttackArgs object based on these settings,
use LogAndRespond.GetTrackAttackArgs().

 DefaultTrackErrorArgs (PeterBlum.DES.Security.TrackErrorArgs) – An instance of TrackErrorArgs that supplies
default properties to each TrackErrorArgs object used by the LogAndRespond.TrackError() and
LogAndRespond.TrackException() methods.

Only modify this as the application starts up. If you want to use a TrackErrorArgs object based on these settings,
use LogAndRespond.GetTrackErrorArgs().

 EventLogIsBackup (Boolean) – When true and the event log is set up, entries are only added to the event log if the
primary logging system - file or email - fails. In addition, system level info is written into the event log regardless of this
setting. It defaults to false.

 AttackTimeOut (Integer) – Number of minutes after an attack is recorded before another attack from the same IP
Address is considered a new attack. Attacks are tracked by IP address. Each IP Address will record a series of attacks
and reset after a delay of this timeout. It defaults to 30 minutes.

 CountBeforeResponse (Integer) – Number of attacks from a particular IP Address before the response actions occur.
Response actions are redirecting to a URL and throwing an exception. It defaults to 1.

Set it above 1 to give the hacker a false sense that they are not being monitored or blocked after they test your site. You
can track their actions and eventually use the responses to forcefully attempt to stop them.

The IP Address count is the total since the web application started up.

 CustomizeTrackAttackArgs (event) – Use this event handler to customize the behavior of logging and response for
each type of attack. See “Customize Logging And Response by AttackType” in the Input Security Installation
Guide.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 192 of 277
http://www.PeterBlum.com

LogAndRespond Methods
Each of the following methods can be referenced on the global instance of LogAndRespond through
PeterBlum.DES.Security.LogAndRespond.Current.

LogAndRespond methods
Click on any of these topics to jump to them:

 Methods To Set up LogAndRespond

 UseLogFile Method – Using Web.Config File Keys

 UseLogFile Method – Pass a File Path

 UseEventLog Method – Using Web.Config File Keys

 UseEventLog Method – Pass an System.Diagnostics.EventLog
object

 ChangeAttackTypeDescription Method

 ChangeAttackInputTypeDescription Method

 Methods To Track Attacks, Events and Exceptions

 GetTrackAttackArgs Method

 GetTrackErrorArgs Method

 TrackException Method That Does Not Get Passed Exception
Object

 TrackException Method That Gets Passed An Exception Object

 TrackError Methods

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 193 of 277
http://www.PeterBlum.com

Methods To Set up LogAndRespond
Click on any of these topics to jump to them:

 UseLogFile Method – Using Web.Config File Keys

 UseLogFile Method – Pass a File Path

 UseEventLog Method – Using Web.Config File Keys

 UseEventLog Method – Pass an System.Diagnostics.EventLog object

 ChangeAttackTypeDescription Method

 ChangeAttackInputTypeDescription Method

UseLogFile Method – Using Web.Config File Keys

PeterBlum.DES.Security.LogAndRespond.UseLogFile() sets up use of file logging. Log files will be created
in the file path supplied by either of these web.config file keys: DES_Security_LogFilePath or
DES_Security_LogVirtualPath. For example:

<add key="DES_Security_LogFilePath" value="\\mycomputername\ErrorLogs" />

<add key="DES_Security_LogFilePath"
 value="C:\documents and settings\all users\ErrorLogs" />

The log files created by Peter’s Input Security are textual with a file name that uses the current date.

This method will test that Peter’s Input Security can create a temporary file in the folder supplied. If it cannot, it will throw
an exception indicating the problem. Common problems include the file path is not found and the folder does not have
security rights to create files for the ASP.NET account.

Note: PeterBlum.com Technical Support cannot provide user education in establishing rights on a folder. See the
Troubleshooting topic “Peter’s Input Security reports a file rights error” in the Input Security Installation Guide for
some assistance with rights errors.

Only call this as the application starts up. This method has already been declared for you in the SetupInputSecurity()
method of Global.asax. You only need to remove the comment symbol.

There are two forms of this method. This one uses the web.config file. The other is passed a file path. Most of the time, the
user will use this one because the web.config file is an excellent place for this data, allowing changes on each server
without changing the code. However, if the user wants to keep that info in the registry or somewhere else, use the other
method.

[C#]

public bool UseFileLog()

[VB]

Public Function UseFileLog() As Boolean

Return value

When true, the web.config file supplied the path. When false, it did not.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 194 of 277
http://www.PeterBlum.com

UseLogFile Method – Pass a File Path

PeterBlum.DES.Security.LogAndRespond.UseLogFile() sets up use of file logging. Log files will be created
in the file path passed in the parameter pFilePath. The log files created by Peter’s Input Security are textual with a file name
that uses the current date.

This method will test that Peter’s Input Security can create a temporary file in the folder supplied. If it cannot, it will throw
an exception indicating the problem. Common problems include the file path is not found and the folder does not have
security rights to create files for the ASP.NET account.

Note: PeterBlum.com Technical Support cannot provide user education in establishing rights on a folder. See the
Troubleshooting topic “Peter’s Input Security reports a file rights error” in the Input Security Installation Guide for
some assistance with rights errors.

Only call this as the application starts up.

There are two forms of this method. Most of the time, the user will use the other one because the web.config file is an
excellent place for this data, allowing changes on each server without changing the code. However, if the user wants to keep
that info in the registry or somewhere else, use the this method.

[C#]

public void UseFileLog(string pFilePath)

[VB]

Public Sub UseFileLog(ByVal pFilePath As String)

Parameters

pFilePath

A complete file path to a folder that will contain the log files. If this file path is not valid or doesn’t have security
rights for the ASP.NET user account, an exception will be thrown.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 195 of 277
http://www.PeterBlum.com

UseEventLog Method – Using Web.Config File Keys

PeterBlum.DES.Security.LogAndRespond.UseEventLog() sets up use of the Windows Event Log. Identify
the Event Log source with the key DES_Security_EventLogSource within the <appSettings> section of the
web.config file.

“Peters Input Security” is a suggested name for the source. For example:

<add key="DES_Security_EventLogSource" name="Peters Input Security" />

Only call this as the application starts up. This method has already been declared for you in the SetupInputSecurity()
method of Global.asax. You only need to remove the comment symbol.

The Windows Registry must be set up with the Source before you can use this method. See the “Using the Windows Event
Log” section of the Input Security Installation Guide.

This method will attempt to add an entry into the Windows Event Log. If it fails, it will throw an exception to notify you that
there is a configuration problem.

There are two forms of this method. Use this one if you want the web.config file to determine the source and to let this
software create the System.Diagnostics.EventLog object. Use the other if you want to create the EventLog object
yourself.

[C#]

public bool UseEventLog()

[VB]

Public Function UseEventLog() As Boolean

Return value

When true, the web.config file supplied the key with the Source. When false, it did not.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 196 of 277
http://www.PeterBlum.com

UseEventLog Method – Pass an System.Diagnostics.EventLog object

PeterBlum.DES.Security.LogAndRespond.UseEventLog() sets up use of the Windows Event Log. Pass a
System.Diagnostics.EventLog object, with Source property assigned. “Peter’s Input Security” is a suggested name
for the source.

Only call this as the application starts up.

The Windows Registry must be set up with the Source before you can use this method. See the “Using the Windows Event
Log” section of the Input Security Installation Guide.

This method will attempt to add an entry into the Windows Event Log. If it fails, it will throw an exception to notify you that
there is a configuration problem.

There are two forms of this method. Use this if you want to create the EventLog object yourself. Use the other one if you
want the web.config file to determine the source and to let this software create the System.Diagnostics.EventLog
object.

[C#]

public void UseEventLog(System.Diagnostics.EventLog pEventLog)

[VB]

Public Sub UseEventLog(ByVal pEventLog As System.Diagnostics.EventLog)

Parameters

pEventLog

An EventLog object with Source assigned.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 197 of 277
http://www.PeterBlum.com

ChangeAttackTypeDescription Method

PeterBlum.DES.Security.LogAndRespond.ChangeAttackTypeDescription() changes the description
for an PeterBlum.DES.Security.AttackType that is shown in the “{ATTACKTYPE}” token of
TrackAttackArgs.LoggingText and TrackAttackArgs.EmailBody. The LogAndRespond.TrackAttack() method
uses this description when its pAttackTypeDescription parameter is "".

[C#]

public void ChangeAttackTypeDescription(
 PeterBlum.DES.Security.AttackType pAttackType,
 string pReplacement)

[VB]

Public Sub ChangeAttackTypeDescription(_
 ByVal pAttackType As PeterBlum.DES.Security.AttackType, _
 ByVal pReplacement As String)

Parameters

pAttackType

The AttackType that you want to change. The enumerated type PeterBlum.DES.Security.AttackType
has these values:

o Unknown

o SQLInjection

o ScriptInjection.

o IllegalValue – Generated by most cases of tampering.

o Other1 through Other10 – For you to declare your own attack types. You select one of the 10 “Other”
entries and use it for any type of error you like.

pReplacement

The new text.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 198 of 277
http://www.PeterBlum.com

ChangeAttackInputTypeDescription Method

PeterBlum.DES.Security.LogAndRespond.ChangeAttackInputTypeDescription() changes the
description for an PeterBlum.DES.Security.AttackInputType that is shown in the “{INPUTTYPE}” token of
TrackAttackArgs.LoggingText and TrackAttackArgs.EmailBody. The LogAndRespond.TrackAttack() method
uses this description when its pAttackInputTypeDescription parameter is "".

[C#]

public void ChangeAttackInputTypeDescription(
 PeterBlum.DES.Security.AttackInputType pAttackInputType,
 string pReplacement)

[VB]

Public Sub ChangeAttackInputTypeDescription(_
 ByVal pAttackInputType As PeterBlum.DES.Security.AttackInputType, _
 ByVal pReplacement As String)

Parameters

pAttackInputType

The AttackInputType that you want to change. The enumerated type
PeterBlum.DES.Security.AttackInputType has these values:

o Unknown

o Field

o HiddenField

o QueryString

o Cookie

o Other1 through Other10 – For you to declare your own attack input types. You select one of the 10 “Other”
entries and use it for any type of error you like.

pReplacement

The new text.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 199 of 277
http://www.PeterBlum.com

Methods To Track Attacks, Events and Exceptions

LogAndRespond methods
Click on any of these topics to jump to them:

 TrackAttack Methods

 GetTrackAttackArgs Method

 TrackException Method That Does Not Get Passed Exception Object

 TrackException Method That Gets Passed An Exception Object

 TrackError Methods

 GetTrackErrorArgs Method

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 200 of 277
http://www.PeterBlum.com

GetTrackAttackArgs Method

PeterBlum.DES.Security.LogAndRespond.GetTrackAttackArgs() returns a new instance of
TrackAttackArgs, optionally initialized with values from DefaultTrackAttackArgs. This is usually used when you call
LogAndRespond.TrackAttack().

[C#]

public PeterBlum.DES.Security.TrackAttackArgs GetTrackAttackArgs(
 bool pApplyDefaults)

[VB]

Public Function GetTrackAttackArgs(ByVal pApplyDefaults As Boolean)
 As PeterBlum.DES.Security.TrackAttackArgs

Parameters

pApplyDefaults

When true, properties are initialized from DefaultTrackAttackArgs. When false, they are the defaults defined
with the TrackAttackArgs class.

Return value

A new instance of TrackAttackArgs.

Example

In this example, the LoginID query string parameter is checked against the authorization rights before permitting the page to
be shown. The user has developed a custom method to validate rights. It returns false if invalid rights were found.

The arguments are customized to redirect to a different page than the LogAndRespond.Current.DefaultTrackAttackArgs
uses.

[C#]

string vLoginID = Request.QueryString["LoginID"];
if (ValidateLogic(vLoginID))
{
 // create the page
}
else
{
 PeterBlum.DES.Security.TrackAttackArgs vArgs =
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(true);
 vArgs.RedirectUrl = "UnknownLogin.aspx";
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(this.Page,
 PeterBlum.DES.Security.AttackType.IllegalValue, "",
 PeterBlum.DES.Security.AttackInputType.QueryString, "",
 "LoginID", vLoginID,
 "Attempt to circumvent authorization", vArgs);
}

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 201 of 277
http://www.PeterBlum.com

[VB]

Dim vLoginID As String = Request.QueryString("LoginID")
If ValidateLogic(vLoginID) Then
 ' create the page
Else
 Dim vArgs As PeterBlum.DES.Security.TrackAttackArgs = _
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackAttackArgs(True)
 vArgs.RedirectUrl = "UnknownLogin.aspx"
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(Me.Page, _
 PeterBlum.DES.Security.AttackType.IllegalValue, "", _
 PeterBlum.DES.Security.AttackInputType.QueryString, "", _
 "LoginID", vLoginID, _
 "Attempt to circumvent authorization", vArgs)
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 202 of 277
http://www.PeterBlum.com

GetTrackErrorArgs Method

PeterBlum.DES.Security.LogAndRespond.GetTrackErrorArgs() returns a new instance of
TrackErrorArgs, optionally initialized with values from DefaultTrackErrorArgs. This is usually used when you call
LogAndRespond.TrackError().

[C#]

public PeterBlum.DES.Security.TrackErrorArgs GetTrackErrorArgs(
 bool pApplyDefaults)

[VB]

Public Function GetTrackErrorArgs(ByVal pApplyDefaults As Boolean)
 As PeterBlum.DES.Security.TrackErrorArgs

Parameters

pApplyDefaults

When true, properties are initialized from DefaultTrackErrorArgs. When false, they are the defaults defined
with the TrackErrorArgs class.

Return value

A new instance of TrackErrorArgs.

Example

In this example, the user was supposed to define the key “MyFilePath” in the <appSettings> section of the web.config
file. The program was built to continue even with this parameter missing as it’s a non-fatal error. But the programmer wants
to be informed to fix the error. It uses the pArgs parameter to send an email to the web master.

[C#]

string vFilePath = ConfigurationSettings.AppSettings["MyFilePath"];
if (vFilePath != null)
{
 // use vFilePath
}
else
{
 PeterBlum.DES.Security.TrackErrorArgs vArgs =
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackErrorArgs(true);
 vArgs.EnableEmail = true;
 vArgs.EmailTo = "WebMaster@MyDomain.com";
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(this.Page,
 "Forgot to define the MyFilePath key in web.config", 10, vArgs);
}

[VB]

Dim vFilePath As String = ConfigurationSettings.AppSettings("MyFilePath")
If Not vFilePath Is Nothing Then
 ' use vFilePath
Else
 Dim vArgs As PeterBlum.DES.Security.TrackErrorArgs = _
 PeterBlum.DES.Security.LogAndRespond.Current.GetTrackErrorArgs(True)
 vArgs.EnableEmail = True
 vArgs.EmailTo = "WebMaster@MyDomain.com"
 PeterBlum.DES.Security.LogAndRespond.Current.TrackError(Me.Page, _
 "Forgot to define the MyFilePath key in web.config", 10, vArgs)
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 203 of 277
http://www.PeterBlum.com

About The SQL Detection Engine
Peter’s Input Security contains a powerful tool to detect SQL injection attacks and report back its findings. The
PageSecurityValidator and FieldSecurityValidator both use this tool. You already know that you can customize it by
changing the SQLDetectionLevel property, where offered, on those validators. Peter’s Input Security also provides XML
configuration files where you can customize the SQL Detection Engine.

The SQL Detection Engine itself is the FindSQLInjection() method on the
PeterBlum.DES.Security.Globals class. It is a static/shared method that you too can use.

Click on any of these topics to jump to them:

 How It Detects SQL within Text

 What Each SQL Detection Level Uses To Detect Attacks

 Statement Detection Algorithm

 Elements Used As Evidence

 Example

 Statement Detection Algorithm Settings

 Editing the LevelRules

 Editing the Weighted Keywords

 Text That is Never Permitted

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalSQLElements Programmatically

 Initial SQL Keywords

 Using the Peter’s Input Security Configuration Files

 Names In Your Database

 Using the Peter’s Input Security Configuration Files

 Modifying DatabaseElementNames Programmatically

 SQL Functions

 Using the Peter’s Input Security Configuration Files

 Modifying SQLFunctions Programmatically

 Creating Your Own Rules

 Using the Peter’s Input Security Configuration Files

 Adding Rules Programmatically

 FindSQLInjection and Other Methods

 UseConfigFiles Method

 FindSQLInjection Method

 AttackResults Class

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 204 of 277
http://www.PeterBlum.com

How It Detects SQL within Text
Click on any of these topics to jump to them:

 Distinguishing SQL from English

 The Tools To Detect Attacks

 Customizing The Rules

 Performance

Distinguishing SQL from English

The SQL Detection Engine looks a string for evidence of the SQL language to identify it as an attack from a hacker. The task
is tricky. SQL looks like English sentences. For example, is the following English or SQL?

Select apples from boxes.

Only the period after “boxes” distinguishes this as an English sentence. It causes a syntax error to SQL. Suppose that instead
of a period, the user typed a carriage return. Now we cannot tell whether it is English or SQL. So we need to look for
evidence. Here’s what the SQL Detection Engine can use to detect evidence on this sentence:

 It has a list of SQL keywords that start a SQL statement, such as SELECT, INSERT, and DELETE. If it finds one of
these and it does not appear to be in the middle of an English sentence (“We select apples from boxes”), this is evidence.

 It has a list of SQL keywords associated with the initial SQL statement. For example, the SELECT statement uses the
supporting keyword “FROM”. Supporting keywords are evidence.

 You can provide the table, field, and database names to Peter’s Input Security. For example, if you define “apples” and
“boxes” in that list, the above sentence has two cases of evidence.

The Tools To Detect Attacks

The SQL Detection Engine has two powerful algorithms that use fuzzy logic to catch some of the attacks and several other
tools.

 The Statement Detection Algorithm looks for evidence of a SQL statements. Its used when you allow individual SQL
keywords because they are also valid English words. So you need additional evidence that those SQL keywords form a
SQL statement. See “Statement Detection Algorithm”.

 The Common Hacking Patterns Algorithm looks for evidence of hacks that appear right after the initial single quote.
See “”. All hacks must use a single quote to attempt to break an ad-hoc statement. (It doesn’t matter if you aren’t using
ad-hoc statements. The hacker doesn’t know this.) This algorithm will find hacks like these:

o ' or 1=1--

o ';shutdown --

 You can provide a list of any text that is never allowed in any input. This is usually a list of very unique, non-English
terms that a hacker might use such as “SELECT *” and “OPENROWSET”.

 When using the SQLDetecionLevel of High, it only needs the presence of just one SQL keyword (from a list that you
can customize) to detect an attack.

 You can supply your own regular expressions to be run on certain SQLDetecionLevels.

The SQL Detection Engine does not implement a SQL parser. This is a VERY important idea. It means it can miss some
cases. However, a SQL parser has a disadvantage when it comes to handling hacking attempts. A hack only gives a part of
the overall SQL statement. It usually starts with a single quote, used to terminate a string parameter of an ad-hock SQL
statement. The parser would be confused by this.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 205 of 277
http://www.PeterBlum.com

Customizing The Rules

The SQL Detection Engine looks for evidence from SQL keywords, names from your database, common SQL functions, and
common hacking patterns. The user assists by supplying rules that fit their web site’s implementation:

 The SQLDetectionLevel. (See “What Each SQL Detection Level Uses To Detect Attacks”.)

 The <illegalsqlelements> section of the Peter’s Input Security configuration files is a list of text that is never
allowed in any input. See “Text That is Never Permitted”.

 The <initialsqlkeywords> and <dangeroussqlkeywords> sections of the Peter’s Input Security
configuration files are lists of SQL keywords that you want detected. See “Initial SQL Keywords”.

 The <sqlfunctions> section of the Peter’s Input Security configuration files is a list of SQL function names. They
are used in both the Statement Detection Algorithm and Common Hacking Pattern Algorithm. See “SQL Functions”.

 The Statement Detection Algorithm gets the database, table, and field names of your database from the
<databaseelementnames> section of the Peter’s Input Security configuration files. This should be set up already,
during product installation. See “Names In Your Database”.

 The Statement Detection Algorithm gets the initial and supporting keywords from the <weightedkeywords> section
of the Peter’s Input Security configuration files. See “Editing the Weighted Keywords”.

 The <levelrules> section of the Peter’s Input Security configuration files is where the SQLDetectionLevels
MediumLow, Medium, and MediumHigh can be customized, especially with its Statement Detection Algorithm. See
“Statement Detection Algorithm Settings”.

 The <customsqlexpression> section of the Peter’s Input Security configuration files allows you to define your
own rules, based upon regular expressions. See “Creating Your Own Rules”.

Performance

All of this power comes with a disadvantage: the SQL Detection Engine is CPU intensive. In other words, it takes time. It
uses complex regular expressions to find the words and patterns that it considers an attack. Here are several ways to limit the
impact of the time used:

 Limit the inputs passed in. The Security Analysis Report makes recommendations when using SQL detection is not
necessary.

 The SQL Detection Levels vary in the amount of time they take. The fastest is Low. Second fastest is High. The rest
have an equal speed and are slowest.

 Tune the data supplied by the configuration files. FindSQLInjection() uses regular expressions to search text.
Regular expressions run faster with less to look for. For example, if <illegalsqlelements> contains 10 items, it
will run much slower than when looking for 3 items.

 Many multiline textboxes need to support the patterns that make up SQL statements. Since these contain the largest text,
they take the longest to evaluate. Consider fully neutralizing these fields and disabling SQL injection detection on them.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 206 of 277
http://www.PeterBlum.com

What Each SQL Detection Level Uses To Detect Attacks
This section shows how each SQL Detection Level detects attacks. The SQLDetectionLevel properties can reflect 5 levels:
Low, MediumLow, Medium, MediumHigh, and High.

All levels include these checks:

 Look for text that is never allowed. It uses the <illegalsqlelements> section of the Peter’s Input Security
configuration files.

 Use your custom rules from the <customsqlexpression> section of the Peter’s Input Security configuration files
that has a minimum level matching the SQL Detection Level.

All levels permit all possible characters. If you want to prevent any specific character, use the CharacterValidator supplied by
Peter’s Data Entry Suite on visible fields and PageSecurityValidator’s HiddenFieldRules, QueryStringRules, and
CookieRules for the rest.

Click on any of these topics to jump to them:

 Level: Low

 Level: MediumLow

 Level: Medium

 Level: MediumHigh

 Level: High

Level: Low
Suggested use: multiline free-form fields that sometimes may have valid SQL statements.

Rules:

 Does not consider SQL keywords, database name, table names, or field names to be an attack. There is one special case
where a dangerous SQL keyword (defined in <dangeroussqlkeywords>) appears in a pattern like this and is
considered an attack:

';dangerouskeyword—

Note: This is only an example. There are a variations of this pattern detected.

 Uses the Common Hacking Patterns Algorithm to find common hacking patterns that start with a single quote. It
demands that the lead quote is followed by [or, and, having, group by, between, in] and somewhere
after, one of these symbols [=, <, >, '%, like, union, true, false]. There are other cases.

Examples:

'or 1=1--

' or true--

' and myfield like '%

' or 1=1; select null from mytable; select null from mytable where myfield='

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 207 of 277
http://www.PeterBlum.com

Level: MediumLow
Suggested use: multiline free-form fields that never include SQL statements.

Rules:

 The Statement Detection Algorithm is used to look for evidence of SQL statements. Its default settings are:

TotalWeightTolerance 14

CombinedWeightTolerance 24

MinElementsFound 4

MinDatabaseElements 1

DatabaseElementWeight 6

SQLFunctionWeight 7

LimitSearchLength 80

RequireLeadQuote true

AllowSQLComment true

See the <rule level="mediumlow" /> item in the custom.config file

 Uses the Common Hacking Patterns Algorithm to find common hacking patterns that start with a single quote. It
demands that the lead quote is followed by [or, and, having, group by, between, in] and somewhere
after, one of these symbols [=, <, >, '%, like, union, true, false]. There are other cases.

Examples:

'or 1=1--

' or true--

' and myfield like '%

' or 1=1; select null from mytable; select null from mytable where myfield='

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 208 of 277
http://www.PeterBlum.com

Level: Medium
Suggested use: single line free-form fields that do not exceed 100 characters. (The idea is short entries without carriage
returns.)

Rules:

 The Statement Detection Algorithm is used to look for evidence of SQL statements. Its default settings are:

TotalWeightTolerance 11

CombinedWeightTolerance 18

MinElementsFound 3

MinDatabaseElements 0

DatabaseElementWeight 6

SQLFunctionWeight 7

LimitSearchLength 100

RequireLeadQuote true

AllowSQLComment false

See the <rule level="medium" /> item in the custom.config file

 Uses the Common Hacking Patterns Algorithm to find common hacking patterns that start with a single quote. If a SQL
comment (--) appears anywhere after, an attack is reported. If a second single quote appears, it looks for any of these as
evidence of an attack when it appears between the two single quotes: =, <, >, '%, like, union, true, false, any
dangerous SQL keyword, or a common SQL function.

Examples:

'--

' or 1=1--

' and myfield like '%

'; shutdown; select null from mytable where myfield='

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 209 of 277
http://www.PeterBlum.com

Level: MediumHigh
Suggested use: fields that allow short phrases or names with the occasional SQL keyword. For example, city name, street
address, and person’s name. Single line text that is usually short enough not to allow useful SQL statements.

Rules:

 The Statement Detection Algorithm is used to look for evidence of SQL statements. Its default settings are:

TotalWeightTolerance 8

CombinedWeightTolerance 12

MinElementsFound 0

MinDatabaseElements 0

DatabaseElementWeight 6

SQLFunctionWeight 7

LimitSearchLength 0

RequireLeadQuote false

AllowSQLComment false

See the <rule level="mediumhigh" /> item in the custom.config file

 Uses the Common Hacking Patterns Algorithm to find common hacking patterns that start with a single quote. If a SQL
comment (--) appears anywhere after, an attack is reported. If a second single quote appears, it looks for any of these as
evidence of an attack when it appears between the two single quotes: =, <, >, '%, like, union, true, false, any
dangerous SQL keyword, or a common SQL function.

Examples:

'--

' or 1=1--

' and myfield like '%

'; shutdown; select null from mytable where myfield='

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 210 of 277
http://www.PeterBlum.com

Level: High
Suggested use: any field that never permits any SQL keyword.

Rules:

 It is an attack if any SQL keywords are found. The keywords are defined in the <initialsqlkeywords> and
<dangeroussqlkeywords> sections of the Peter’s Input Security configuration files. It does not demand them to be
in any pattern. Just a single SQL keyword is enough to detect an attack.

 It is an attack if the string “/*” (the start of a SQL comment) appears.

 Uses the Common Hacking Patterns Algorithm to find common hacking patterns that start with a single quote. If a SQL
comment (--) appears anywhere after, an attack is reported. If a second single quote appears, it looks for any of these as
evidence of an attack when it appears between the two single quotes: =, <, >, '%, like, union, true, false, or a
common SQL function.

Examples:

'--

' or 1=1--

' and myfield like '%

' A=B+C '

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 211 of 277
http://www.PeterBlum.com

Statement Detection Algorithm
A SQLDetectionLevel of High never permits SQL keywords. A SQLDetectionLevel of Low always permits SQL keywords.
Levels MediumLow, Medium, MediumHigh allow SQL keywords but attempt to block SQL statements. They use the
Statement Detection Algorithm to detect a SQL statement.

The Statement Detection Algorithm determines if there are several elements on the page that demonstrate evidence of a SQL
statement. A word like "select" or "insert" is valid in English text. But when put together with other SQL keywords, SQL
function names, your table names, and your field names, the text can start looking like SQL statement.

Its goal is to permit human language text while blocking text with real SQL statements. Yet this algorithm can be fooled into
blocking legal English sentences. (English is the language of SQL too.) The Statement Detection Algorithm provide
numerous settings in the Peter’s Input Security Configuration Files to tune it the way you like. See “Statement Detection
Algorithm Settings”.

Click on any of these topics to jump to them:

 Elements Used As Evidence

 Example

 Statement Detection Algorithm Settings

 Editing the LevelRules

 Editing the Weighted Keywords

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 212 of 277
http://www.PeterBlum.com

Elements Used As Evidence
This algorithm looks for a SQL keyword that begins a SQL statement. This is called the initial SQL keyword. Then it looks
for supporting SQL keywords, common SQL function names, and database element names. Each of these contributes a
"weight". If the total weight exceeds a tolerance, an error is reported. If one initial SQL keyword does not exceed the
tolerance, another initial SQL keyword is analyzed. Even if none of the initial SQL keywords found reaches the weight
tolerance, the combined total weight is compared to another tolerance to potentially report an error.

Here are the elements uses as evidence:

 Initial SQL keyword – A SQL keyword that always begins a SQL statement. You define them in the
<weightedkeywords> section of the Peter’s Input Security configuration files. It ignores any that are clearly part of
a human language sentence. For the rest, it looks to the right of the keyword for more evidence.

 Supporting SQL keyword – A SQL keyword associated with the Initial SQL keyword. For example, “FROM” and
“ORDER BY” are supporting SQL keywords of “SELECT”. Each of these is defined along with its unique weight in the
<weightedkeywords> section of the Peter’s Input Security configuration files. It ignores any that are clearly part of
a human language sentence. For the rest, it adds their weight to a total weight for the statement.

 Database Element Name – The names of your database, tables, and fields. You define these in the
<databaseelementnames> section of the Peter’s Input Security configuration files. Each unique name found adds
to the total weight of the statement.

 Common SQL functions – Your SQL database provides a number of functions. For example, “CHAR()” and
“PATINDEX()”.Peter’s Input Security looks functions more likely to be used by the hacker. They must have the
function name followed by a left parenthesis in the text to be detected. Each unique name found adds to the total weight
of the statement.

Example
Suppose the following supporting keywords and weights are defined for the SELECT keyword:

from 8
order by 8
where 6
join 5
having 2
and 1

The weight defined for all database element names is 6. The weight of all common SQL functions is 7.

These names have been defined in the <databaseelementnames> section: clients, login.

The following statements will have these total weights:

select column1 from Users where Users.LastName like 'J%'

Total weight = 14

select column1 from Clients where Clients.login = 'admin'

Total weight = 26 (The second “Client” is ignored because it’s a duplicate.)

select column1 from Users
 where Users.LastName like 'J%' and Users.postalcode = '12345'

Total weight = 15

select column1 from Accounts join Accounts.ClientID == Clients.ID

8 6 6 6

8 6

8 6 1

8 5

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 213 of 277
http://www.PeterBlum.com

Total weight = 13

select column1 from Accounts where RTrim(Users.LastName) = 'smith'

Total weight = 21 (RTrim is a common SQL function)

8 6 7

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 214 of 277
http://www.PeterBlum.com

Statement Detection Algorithm Settings
This algorithm is highly configurable through the Peter’s Input Security Configuration Files. The files document how to set
up each of these. When unchanged, the files show the default settings for each level.

Settings specific to each level are found in the <levelrules> section of the custom.config file. See “Editing the
LevelRules”.

 Initial and supporting SQL Keywords – Defined in the <weightedkeywords> section of master.config and
custom.config files. Each <item> defines an initial SQL keyword, supporting SQL keyword, and weight. These
values are independent of the SQL Detection Level.

By default, the following initial SQL keywords have been defined with common supporting keywords: select,
update, insert, delete.

See “Editing the Weighted Keywords”.

 TotalWeightTolerance – <rule totalweighttolerance="#" /> The total weight required for the supporting
keywords, database element names, and common SQL functions found to indicate an attack. Must be 1 or higher.

Supporting keywords get their weight from the <weightedkeywords> section of the configuration files. Database
element names get their weight from the DatabaseElementWeight (below). Common SQL functions get their weight
from SqlFunctionWeight (below).

Level Value
MediumHigh 8
Medium 11
MediumLow 14

 CombinedWeightTolerance – <rule combinedweighttolerance ="#" /> If one SQL statement does not
have the weight to reach the TotalWeightTolerance, continue looking at other initial SQL keywords. The weights of each
SQL statement are combined and compared to this value. If they exceed this value, an attack is detected.

Level Value
MediumHigh 12
Medium 18
MediumLow 24

 MinElementsFound – <rule minelementsfound="#" /> Each unique supporting SQL keyword, database
element name, and SQL function name found is an element. This value defines how many elements are found before any
error is reported. Generally this number should be kept low, like 2 - 4. 0 is valid. It’s valid to use a high number like 10
although that may ignore too many cases.

Level Value
MediumHigh 0
Medium 3
MediumLow 4

 MinDatabaseElements – <rule mindatabaseelements="#" /> This value defines how many unique database
element names are found before any error is reported. For example, when the value is 1, the SQL statement requires at
least 1 database element name. This rule is not used when an item matching a SQL function name is found.

Level Value
MediumHigh 0
Medium 0
MediumLow 1

 DatabaseElementWeight – <rule databaseelementweight="#" /> When a unique database element name is
found, this value is added to the total weight of the SQL statement.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 215 of 277
http://www.PeterBlum.com

Level Value
MediumHigh 6
Medium 6
MediumLow 6

 SqlFunctionWeight – <rule sqlfunctionweight="#" /> When > 0, look for common SQL functions. For each
unique function name found, this value is added to the total weight of the SQL statement. SQL functions are often non-
English and are always followed by a left parenthesis. So when one is find, it’s a strong indicator of SQL.

Level Value
MediumHigh 7
Medium 7
MediumLow 7

 LimitSearchLength – <rule limitsearchlength="#" /> When > 0, search for the first SQL statement within
text shorted to this many characters. This will avoid finding possible supporting keywords in other human language
sentences later in the text after this limit.

Before shortening the text, the software adds up the characters in spaces, carriage returns, SQL comments (/* */) and
preceding the lead single quote. It adds this total to LimitSearchLength, making the text longer. This avoids a clever hack
where a large number of characters is inserted to push the SQL statement beyond the LimitSearchLength.

Hackers must create valid SQL to conduct their business. That requires it to appear at the start of the text. This option
will allow SQL statements to appear later in the text, normally after human language text, where the SQL parser would
determine it is invalid text.

When 0, the entire text is always searched.

When non-zero, if the first SQL statement found does not reach the TotalWeightTolerance, the entire text is searched for
all remaining SQL statements.

Level Value
MediumHigh 0
Medium 100
MediumLow 80

 RequireLeadQuote – <rule requireleadquote="true|false" />When true, there must be a single quote
in the first "sentence" (before the first [newline] character). A single quote indicates the closure of a string within some
ad-hoc code and starts most hacks. When false, you are trying to block SQL statements even if a single quote isn’t
found.

Level Value
MediumHigh false
Medium true
MediumLow true

 AllowSQLComments – <rule allowsqlcomments="true|false" /> When true, the SQL comment style
of /* */ is permitted in the text. When false, it is not. If found, an attack is reported.

Level Value
MediumHigh false
Medium false
MediumLow true

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 216 of 277
http://www.PeterBlum.com

Editing the LevelRules
Most of the items in the previous section are elements of the <levelrules> section of the custom.config file. There are
three <rule> rows, one for each level: MediumLow, Medium, and MediumHigh. You can modify them or write code to
modify the associated properties on the PeterBlum.DES.Security.DetectionLevelRules object. Both are
described here.

Using the Custom.Config File

1. In a text editor, open custom.config file. The Peter’s Input Security configuration files are located in the
DES\Security Config Files folder of your web application.

2. Locate the section <levelrules>.

3. Edit the desired properties. Do not edit the level= attribute.

Modifying the DetectionLevelRules Object Programmatically

1. Open Global.asax in a text editor.

2. Locate the call to PeterBlum.DES.Security.UseConfigFiles(). Add your code anywhere after this call so
that it can load defaults from the custom.config file first.

3. Retrieve a DetectionLevelRules object using
PeterBlum.DES.Security.Globals.GetDetectionLevelRules(). It takes a
PeterBlum.DES.Security.SQLDetectionLevel as a parameter and returns the object. Example is below.

4. Edit the property. Each property name is identical to the names shown in “Statement Detection Algorithm Settings”.
Properties are either integers or booleans.

Example

For the SQLDetectionLevel of Medium, change AllowSQLComments to false and set the TotalWeightTolerance to 13.

[C#]

PeterBlum.DES.Security.UseConfigFiles();
PeterBlum.DES.Security.DetectionLevelRules vRule =
 PeterBlum.DES.Security.Globals.GetDetectionLevelRules(
 PeterBlum.DES.Security.SQLDetectionLevel.Medium);
vRule.AllowSQLComments = false;
vRule.TotalWeightTolerance = 13;

[VB]

PeterBlum.DES.Security.UseConfigFiles()
Dim vRule As PeterBlum.DES.Security.DetectionLevelRules = _
 PeterBlum.DES.Security.Globals.GetDetectionLevelRules(_
 PeterBlum.DES.Security.SQLDetectionLevel.Medium)
vRule.AllowSQLComments = False
vRule.TotalWeightTolerance = 13

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 217 of 277
http://www.PeterBlum.com

Editing the Weighted Keywords
You can customize the Statement Detection Algorithm by editing a Peter’s Input Security configuration file. You can also
customize them programmatically with the DefineWeightedKeyword() and DeleteWeightedKeyword()
methods.

The <weightedkeywords> section of each Peter’s Input Security configuration file identifies initial and supporting
keywords with their weights.

1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are
located in the DES\Security Config Files folder of your web application.

 The master.config file contains the default weighted keyword settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <weightedkeywords> section.

3. To add an item, add this to the <weightedkeywords> section.

<item initial="keyword" supporting="keyword" weight="value"
 action="add" />

 The initial= attribute must contain the initial SQL keyword.

 The supporting= attribute must contain the supporting SQL keyword.

 The weighted= attribute must contain the weight, an integer between 1 and 9.

For example:

<item initial="select" supporting="from" weight="8"
 action="add" />

4. To modify the weight of an item:

 If you are using the custom.config file, copy the item into the <weightedkeywords> section of
custom.config. Set the weight= attribute there.

 If you are using any other file, set the weight= attribute.

5. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <weightedkeywords> section of
custom.config. Set action="remove".

 If you are using any other file, set action="none".

6. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 218 of 277
http://www.PeterBlum.com

DefineWeightedKeyword Method

PeterBlum.DES.Security.Globals.DefineWeightedKeyword() supports the Statement Detection
Algorithm. This method defines the weight of a supporting keyword for a specified initial keyword. If you are using the
Peter’s Input Security configuration files, see the previous section.

Call DefineWeightedKeyword()with the same initial SQL Keyword for as many supporting keywords as needed. For
example:

PeterBlum.DES.Security.Globals.DefineWeightedKeyword("SELECT", "FROM", 2)
PeterBlum.DES.Security.Globals.DefineWeightedKeyword("SELECT", "WHERE", 8)

By default, these initial keywords are already defined with a list of weighted keywords: SELECT, UPDATE, INSERT, and
DELETE.

To edit a weight of an existing supporting keyword, just define it again with a new weight.

To delete a supporting keyword that was previously defined, call DeleteWeightedKeyword().

[C#]

public static void DefineWeightedKeyword(
 string pInitialKeyword,
 string pSupportingKeyword,
 int pWeight)

[VB]

Public Shared Sub DefineWeightedKeyword(_
 ByVal pInitialKeyword As String, _
 ByVal pSupportingKeyword As String, _
 ByVal pWeight As Integer)

Parameters

pInitialKeyword

The initial SQL keyword in a SQL statement. You will be adding supporting keywords to this keywords. Call this
method with the same initial SQL keyword for each supporting keyword.

pSupportingKeyword

The supporting SQL keyword in a SQL statement whose weight you want to define or edit. If the supporting
keyword has not been defined, it will be added. If it has been defined, its weight will be updated with the value from
pWeight.

If the keyword contains multiple words separated by spaces, Peter’s Input Security will replace the spaces with
matching rules to a variety of ways to separate words including multiple spaces, new lines, and SQL comment
phrases.

pWeight

The weight of the supporting keyword. Weights should be from 1 to 9. Each SQL Detection Level establishes a
tolerance for total weight of all supporting keywords found. The tolerances range from 8 to 14.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 219 of 277
http://www.PeterBlum.com

DeleteWeightedKeyword Method

PeterBlum.DES.Security.DeleteWeightedKeyword() removes either a supporting keyword or an initial
keyword with all of its supporting keywords.

To remove a supporting keyword, specify both the initial and supporting keywords.

To remove an initial keyword, pass the initial keyword but set pSupportingKeyword = "".

[C#]

public static void DeleteWeightedKeyword(
 string pInitialKeyword,
 string pSupportingKeyword)

[VB]

Public Shared Sub DeleteWeightedKeyword(_
 ByVal pInitialKeyword As String, _
 ByVal pSupportingKeyword As String)

Parameters

pInitialKeyword

The initial SQL keyword in a SQL statement that you want to modify.

pSupportingKeyword

The supporting SQL keyword in a SQL statement whose weight you want to delete. If "", it will delete the initial
keyword with all of its supporting keywords.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 220 of 277
http://www.PeterBlum.com

Text That is Never Permitted
The <illegalsqlelements> section of each Peter’s Input Security configuration file contains a list of terms that are
never permitted in any input. This can be SQL keywords, SQL patterns, table names and column names. This list is used with
all SQL Detection Levels.

For example, if this list contains the string “shutdown”, no text will ever be permitted to contain the text “shutdown”.

Suggestion: Use only phrases that would not normally appear in human language. For example, the predefined list looks for
“set @[any variable name]”. That is unique to the SQL language.

Sometimes its appropriate to put table and field names in this list. If you have very unique table and field names, you can add
them here to guarantee that the hacker cannot ever enter them. If you have table and field names that are likely to appear in
human language, enter them into the <databaseelementnames> section of the config files. See “Names In Your
Database”.

The SQL Detection Engine treats each item as a regular expression and performs a case insensitive match. These characters
must precede the term in the text for it to be considered: space, enter, double quote ("), single quote ('), or left parenthesis.
These characters must follow the term in the text: space, enter, double quote ("), single quote ('), or right parenthesis. The
term can also be at the start or end of the input.

If you enter multiple words, separate them with spaces. Peter’s Input Security will replace the spaces with matching rules to a
variety of ways to separate words including multiple spaces, new lines, and SQL comment phrases.

There is an extensive list of default values. Look at the <illegalsqlelements> section of the master.config file for
this list. Also look in the config file associated with the database that you are using.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalSQLElements Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 221 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are located

in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <illegalsqlelements> section.

3. To add an item, add this to the <illegalsqlelements> section.

<item action="add">value</item>

 Set the value to the illegal SQL element

 You can use a regular expression for the value. If you do, add the attribute regex="true".

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <illegalsqlelements> section of
custom.config. Set action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 222 of 277
http://www.PeterBlum.com

Modifying IllegalSQLElements Programmatically
The <illegalsqlelements> are loaded into the static/shared property
PeterBlum.DES.Security.Globals.IllegalSQLElements which is a
System.Collections.Specialized.StringCollection object. You can modify the elements within this
property as the application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.IllegalSQLElements.Add("your text")

The value can be a regular expression. You have to be careful with the characters that regular expressions define as special
symbols. Click here for a list of those symbols. If you want to use those characters as ordinary symbols, either precede them
by a slash (\) or pass your string into System.Text.RegularExpressions.Regex.Escape().

For example, the period is a special character. If you want to define the string “A.B” where period is an ordinary character,
either enter “A\.B” or call System.Text.RegularExpressions.Regex.Escape("A.B").

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.html�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtextregularexpressionsregexclassescapetopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 223 of 277
http://www.PeterBlum.com

Initial SQL Keywords
The <initialsqlkeywords> and <dangeroussqlkeywords> sections of each Peter’s Input Security configuration
file contain a list of SQL keywords that appear at the beginning of a SQL statement. Their use depends on the SQL Detection
Level.

Those that can alter the structure of your database should be defined in <dangeroussqlkeywords>. The rest can be
defined in <initialsqlkeywords>. You do not need to define every possible keyword. Only those that you feel may be
used in attacks.

The SQL Detection Engine treats each item as a regular expression and performs a case insensitive match. These characters
must precede the term in the text for it to be considered: space, enter, double quote ("), single quote ('), or left parenthesis.
These characters must follow the term in the text: space, enter, double quote ("), single quote ('), or right parenthesis. The
term can also be at the start or end of the input.

There is an extensive list of default values. Look at the <initialsqlkeywords> and <dangeroussqlkeywords>
sections of the master.config file for the defaults.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying InitialSQLKeywords Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 224 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
These steps apply to both <initialsqlkeywords> and <dangeroussqlkeywords> sections.

1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are
located in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <initialsqlkeywords> or <dangeroussqlkeywords> section.

3. To add an item, add this to the section.

<item action="add">value</item>

 Set the value to the SQL keyword

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <initialsqlkeywords> or
<dangeroussqlkeywords> section of custom.config. Set action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 225 of 277
http://www.PeterBlum.com

Modifying InitialSQLKeywords Programmatically
The <initialsqlkeywords> are loaded into the static/shared property
PeterBlum.DES.Security.Globals.InitialSQLKeywords which is a
System.Collections.Specialized.StringCollection object. The <dangeroussqlkeywords> are
loaded into the static/shared property PeterBlum.DES.Security.Globals.DangerousSQLKeywords which is a
System.Collections.Specialized.StringCollection object. You can modify these properties as the
application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.InitialSQLKeywords.Add("your text")

PeterBlum.DES.Security.Globals.DangerousSQLKeywords.Add("your text")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 226 of 277
http://www.PeterBlum.com

Names In Your Database
The <databaseelementnames> section of each Peter’s Input Security configuration file contains a list of names
defined in your database including:

 The name of the database

 The table names

 The more important column names in your tables.

These names are used to support the Statement Detection Algorithm used by SQL Detection Level of MediumLow through
MediumHigh.

Suppose that you have a table named "Clients" which is in this list. The SQL Detection Engine will have a much better
chance of detecting this as an attack: SELECT * from Clients.

Note: When creating a database, it is a good idea to define table names that are not found in human language. For example,
use "TB_Clients" instead of "Clients". This avoids having false positives ("We've given you a select choice of clients from our
records."). It also makes it harder for hackers to guess at likely names.

Consider adding all table names and some of the more important field names to this list. For field names, primary key fields
and fields used in JOINS are good choices. However, remember that the larger the list, the more CPU processing is needed
for MediumLow to MediumHigh searches.

If you have very unique table and field names – those that never appear in human language, consider adding them into
<illegalsqlelements>.

The SQL Detection Engine treats each item as a regular expression and performs a case insensitive match. These characters
must precede the term in the text for it to be considered: space, enter, double quote ("), single quote ('), or left parenthesis.
These characters must follow the term in the text: space, enter, double quote ("), single quote ('), or right parenthesis. The
term can also be at the start or end of the input.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying DatabaseElementNames Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 227 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open the custom.config file to edit. It is located in the DES\Security Config Files folder of your

web application.

2. Locate the <databaseelementnames> section.

3. To add an item, add this to the <databaseelementnames> section.

<item action="add">name</item>

 You can use a regular expression for the value. If you do, add the attribute regex="true".

4. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 228 of 277
http://www.PeterBlum.com

Modifying DatabaseElementNames Programmatically
The <databaseelementnames> are loaded into the static/shared property
PeterBlum.DES.Security.Globals.DatabaseElementNames which is a
System.Collections.Specialized.StringCollection object. You can modify the elements within this
property as the application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.DatabaseElementNames.Add("your text")

The value can be a regular expression. You have to be careful with the characters that regular expressions define as special
symbols. Click here for a list of those symbols. If you want to use those characters as ordinary symbols, either precede them
by a slash (\) or pass your string into System.Text.RegularExpressions.Regex.Escape().

For example, the period is a special character. If you want to define the string “A.B” where period is an ordinary character,
either enter “A\.B” or call System.Text.RegularExpressions.Regex.Escape("A.B").

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.html�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtextregularexpressionsregexclassescapetopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 229 of 277
http://www.PeterBlum.com

SQL Functions
The <sqlfunctions> section of each Peter’s Input Security configuration file contains a list of SQL functions. They are
used in both the Statement Detection Algorithm and Common Hacking Patterns Algorithm.

SQL Functions have a very unique pattern that makes them excellent identifiers of SQL. They are a name (often not human
language) that is followed by a parenthesis. For example, CHAR(, PATINDEX(, and ISNULL(.

All functions will be found only if they are immediately followed by a left parenthesis (MS SQL permits spaces, newlines
and comments between the name and the parenthesis. This is handled automatically for you.)

Define the complete function name without the parenthesis. For example, “CHAR”, “PATINDEX”, and “ISNULL”. Peter’s
Input Security uses a case insenstive match.

There is an extensive list of default values. Look at the <sqlfunctions> section of the master.config file for the
defaults.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying SQLFunctions Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 230 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are

located in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <sqlfunctions> section.

3. To add an item, add this to the section.

<item action="add">value</item>

 Set the value to the SQL function

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <sqlfunction> section of custom.config. Set
action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 231 of 277
http://www.PeterBlum.com

Modifying SQLFunctions Programmatically
The <sqlfunctions> are loaded into the static/shared property PeterBlum.DES.Security.Globals.SQLFunctions which
is a System.Collections.Specialized.StringCollection object. You can modify this property as the
application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.SQLFunctions.Add("your text")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 232 of 277
http://www.PeterBlum.com

Creating Your Own Rules
You can add your own rules to detect SQL injection attacks with this method. Your rules are regular expressions which look
at the full text of each input with a case insensitive match.

Your expressions are defined along with a minimum SQL Detection Level to run and an error message to log when detected.

Add your rules to the <customsqlexpressions> section of the custom.config file or by using the
CustomSQLExpression() method.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Adding Rules Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 233 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open the custom.config file to edit. It is located in the DES\Security Config Files folder of your

web application.

2. Locate the <customsqlexpressions> section.

3. Add this to the <customsqlexpressions> section.

<item message="message" level="level" errorcode="number"
severeerror="true|false" requireleadquote="true|false"
startafterleadquote="true|false" >regular expression</item>

 The message= attribute must contain the error message that appears in logs when this expression is matched.

 The level= attribute defines the minimum level to run this expression. It must contain one of these values: low,
mediumlow, medium, mediumhigh, high.

 The errorcode= attribute is an optional error code. It must be an integer. If you supply a value other than 0, it
appears in the log files and the AttackResults object returned by FindSQLInjection(). If 0 or the
attribute is not supplied, the error code returned is 900. The range 902 – 999 is reserved for your error codes.

 The severeerror= attribute determines if the error is severe or not. When true, it is severe. The
FieldSecurityValidator.SQLCommunicationMode property uses severity with some of its settings.

 The requireleadquote= attribute determines if your regular expression is run or not, depending on if there is a
lead single quote in the text. A lead single quote is a the first single quote character anywhere in text, prior to the
first newline character. It is used by hackers to activate their attack on an ad-hoc SQL statement.

When true, the lead single quote is required. When false, it is not. If omitted, it defaults to false.

 The startafterleadquote= attribute determines if your regular expression searches the entire text or only
after the lead single quote.

When true, it only searches from the character after the lead single quote through the end of the text. You can
safely use the regular expression symbol for beginning of text: ^.

When false or there is no lead single quote, the entire text is searched.

When omitted, it defaults to false.

 You can learn about the syntax of regular expressions here.

For example:

<item message="The reserved word 'admin' was found" level="low"
 errorcode="930" severeerror="false" requireleadquote="true">
 admin(\W|$)</item>

4. Restart your web application to load the changes.

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.html�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 234 of 277
http://www.PeterBlum.com

Adding Rules Programmatically

CustomSQLExpression Method

You can add your own rules to detect SQL injection attacks with
PeterBlum.DES.Security.Globals.CustomSQLExpression(). Your rules are regular expressions which look
at the full text of each input with a case insensitive match.

Your expressions are defined along with a minimum SQL Detection Level to run and an error message to log when detected.

You can call this for as many expressions as needed.

[C#]

public static void CustomSQLExpression(
 string pExpression,
 string pErrorMessage,
 int pErrorCode, bool pSevereError,
 bool pRequireLeadQuote, bool pStartAfterLeadQuote,
 PeterBlum.DES.Security.SQLDetectionLevel pMinimumLevel)

[VB]

Public Shared Sub CustomSQLExpression(_
 ByVal pExpression As String, _
 ByVal pErrorMessage As String, _
 ByVal pErrorCode As Integer, _
 ByVal pSevereError As Boolean, _
 ByVal pRequireLeadQuote As Boolean, _
 ByVal pStartAfterLeadQuote As Boolean, _
 ByVal pMinimumLevel As PeterBlum.DES.Security.SQLDetectionLevel)

Parameters

pExpression

Your regular expression. Click here for help on regular expressions. The expressions entered are not modified in any
way by this engine. The FindSQLInjection() method uses them with a case insensitive match that searches
multiline text.

pErrorMessage

The error message that will be written into the logs within the “{DETAILS}” token.

pErrorCode

An optional error code. If you supply a value other than 0, it appears in the log files and the AttackResults
object returned by FindSQLInjection(). If 0, the error code returned is 900. The range 902 – 999 is reserved
for your error codes.

pSevereError

Determines if the error is severe or not. When true, it is severe. The
FieldSecurityValidator.SQLCommunicationMode property uses severity with some of its settings.

pRequireLeadQuote

Determines if your regular expression is run or not, depending on if there is a lead single quote in the text. A lead
single quote is a the first single quote character anywhere in text, prior to the first newline character. It is used by
hackers to activate their attack on an ad-hoc SQL statement.

When true, the lead single quote is required. When false, it is not.

pStartAfterLeadQuote

Determines if your regular expression searches the entire text or only after the lead single quote.

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.html�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 235 of 277
http://www.PeterBlum.com

When true, it only searches from the character after the lead single quote through the end of the text. You can
safely use the regular expression symbol for beginning of text: ^.

When false or there is no lead single quote, the entire text is searched.

pMinimumLevel

The minimum SQL Detection Level that will use this expression. To use it for all levels, set this to
SQLDetectionLevel.Low.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 236 of 277
http://www.PeterBlum.com

FindSQLInjection and Other Methods
The following are static/shared methods on the PeterBlum.DES.Security.Globals class.

Note: Peter’s Data Entry Suite has its own Globals class at PeterBlum.DES.Globals. Do not confuse the two classes.

Click on any of these topics to jump to them:

 UseConfigFiles Method

 FindSQLInjection Method

 AttackResults Class

UseConfigFiles Method
PeterBlum.DES.Security.Globals.UseConfigFiles() loads all of the configuration files within the
DES\Security Config Files folder of your web application. It is called within the SetupInputSecurity() method.
You only have to modify the parameter passed in to determine the database you are using.

[C#]

public static void UseConfigFiles(
 PeterBlum.DES.Security.DatabaseTypes pDatabaseType)

[VB]

Public Shared Sub UseConfigFiles(_
 ByVal pDatabaseType As PeterBlum.DES.Security.DatabaseTypes)

Parameters

pDatabaseType

Determines additional configuration based on the type of database that you use. This enumerated type has these
values:

o None – No database is used or your database type is not listed amongst these options.

o MSSql – Using Microsoft SQL Server. It uses the MSSqlServer.config file.

o Oracle – Using Oracle. It uses the Oracle.config file.

o MSAccess – Using Microsoft Access. It uses the MSAccess.config file.

o MySQL – Using MySql. It uses the MySQL.config file.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 237 of 277
http://www.PeterBlum.com

FindSQLInjection Method
PeterBlum.DES.Security.Globals.FindSQLInjection() searches text for SQL injection patterns. You pass
in the SQL Detection Level. (See “What Each SQL Detection Level Uses To Detect Attacks”.)

It uses all of the SQL related sections of the Peter’s Input Security configuration files to determine an attack is present:

 The Statement Detection Algorithm. It is configured with the <weightedkeywords> section of the Peter’s Input
Security configuration files. See “Editing the Weighted Keywords”.

 The <illegalsqlelements> section of the Peter’s Input Security configuration files is a list of text that is never
allowed in any input. See “Text That is Never Permitted”.

 The <initialsqlkeywords> and <dangeroussqlkeywords> sections of the Peter’s Input Security
configuration files are lists of SQL keywords that you want detected. See “Initial SQL Keywords”.

 The <sqlfunctions> section of the Peter’s Input Security configuration files is a list of SQL function names. They
are used in both the Statement Detection Algorithm and Common Hacking Pattern Algorithm. See “SQL Functions”.

 The Statement Detection Algorithm gets the database, table, and field names of your database from the
<databaseelementnames> section of the Peter’s Input Security configuration files. This should be set up already,
during product installation. See “Names In Your Database”.

 The Statement Detection Algorithm gets the initial and supporting keywords from the <weightedkeywords> section
of the Peter’s Input Security configuration files. See “Editing the Weighted Keywords”.

 The <levelrules> section of the Peter’s Input Security configuration files is where the SQLDetectionLevels
MediumLow, Medium, and MediumHigh can be customized, especially with its Statement Detection Algorithm. See
“Statement Detection Algorithm Settings”.

 The <customsqlexpression> section of the Peter’s Input Security configuration files allows you to define your
own rules, based upon regular expressions. See “Creating Your Own Rules”.

It returns a PeterBlum.DES.Security.AttackResults object when an error is found. It returns null/nothing
when there is no error. The AttackResults object includes an error message, error code, and up to 2 values taken from
the data that identify what triggered the error.

It is used within the PageSecurityValidator and FieldSecurityValidator controls. You can use it as well. For example, you
may create a CustomValidator that uses this method.

This method uses CPU intensive regular expressions. See the introduction to this section for suggestions on optimizing it.

[C#]

public static PeterBlum.DES.Security.AttackResults FindSQLInjection(
 string pText,
 PeterBlum.DES.Security.SQLDetectionLevel pSQLDetectionLevel)

[VB]

Public Shared Function FindSQLInjection(_
 ByVal pText As String, _
 ByVal pSQLDetectionLevel As PeterBlum.DES.Security.SQLDetectionLevel) _
 As PeterBlum.DES.Security.AttackResults

Parameters

pText

The text to evaluate.

pSQLDetectionLevel

The SQL Detection Level to apply against this text.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 238 of 277
http://www.PeterBlum.com

Returns

When there is no error, it returns null/nothing. Otherwise, it returns a
PeterBlum.DES.Security.AttackResults object.

Example

Suppose the user stores the first and last name of a customer in one database column using the format “last, first”. Their data
entry page offers two textboxes: first name and last name. Since those two fields will be concatenated into one string, it is
possible that a hacker will split up their SQL injection attack across the two fields. So you need to test the concatenated string
for SQL injection.

[C#]

string vLastFirst = LastName.Text + ", " + FirstName.Text;
PeterBlum.DES.Security.AttackResults vAttackResults =
PeterBlum.DES.Security.Globals.FindSQLInjection(
 vLastFirst, PeterBlum.DES.Security.SQLDetectionLevel.MediumHigh);
if (vAttackResults == null)
{
 // save it
}
else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(this.Page,
 PeterBlum.DES.Security.AttackType.SQLInjection, "",
 PeterBlum.DES.Security.AttackInputType.Field, "",
 LastName.UniqueID, vLastFirst,
 vAttackResults); // assumes this redirects to another page to block

[VB]

Dim vLastFirst As String = LastName.Text + ", " + FirstName.Text
Dim vAttackResults As PeterBlum.DES.Security.AttackResults =
PeterBlum.DES.Security.Globals.FindSQLInjection(_
 vLastFirst, PeterBlum.DES.Security.SQLDetectionLevel.MediumHigh)
If vAttackResults Is Nothing Then
 ' save it

Else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(Me.Page, _
 PeterBlum.DES.Security.AttackType.SQLInjection, "", _
 PeterBlum.DES.Security.AttackInputType.Field, "", _
 LastName.UniqueID, vLastFirst, _
 vAttackResults) ' assumes this redirects to another page to block
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 239 of 277
http://www.PeterBlum.com

AttackResults Class
The PeterBlum.DES.Security.AttackResults class is returned by the FindSQLInjection() and
FindScriptInjection() methods to describe the attack detected. It can be passed into the AttackDetails object
for use by TrackAttack().

AttackResults Properties

 ErrorCode (Integer) – The error code. See the file [DES Product Folder]\Input Security\ErrorCodes.txt for
details about error codes.

 Severe (Boolean) – When true, the error code is considered severe. When false, it is not. The FieldSecurityValidator uses
the severity in its SQLCommunicationMode and ScriptCommunicationMode properties. You can see the defaults for
severity on each error code in the ErrorCodes.txt file.

You can customize the severity when the application starts by calling
PeterBlum.DES.Security.Globals.CustomizeErrorSeverity(errorcode, severe). Pass the
errorcode and true for severe and false for minor.

 Description (String) – The description associated with the error code. In the ErrorCodes.txt file, you will see optional
tokens, ‘{0}’ and ‘{1}’. When you access this property, those tokens will have been replaced by the Value1 and Value2
properties.

You can customize the description by calling
PeterBlum.DES.Security.Globals.CustomizeErrorCode(errorcode, description). Pass the
error code to change and the new description. The description can use the tokens, ‘{0}’ and ‘{1}’ if the original
description had them.

 Value1 (String) – A value associated with the text input that demonstrates the problem found. For example, the name of
an illegal tag or SQL Keyword.

This value has already been assigned to the '{0}' token of the description.

 Value2 (String) – A value associated with the text input that demonstrates the problem found. It is usually a setting,
such as the query string parameter name or a property like value you assigned to HiddenFieldRules.Minimum, to help
you understand the rule better.

This value has already been assigned to the '{1}' token of the description.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 240 of 277
http://www.PeterBlum.com

About The HTML and Script Detection Engine
Peter’s Input Security contains a powerful tool to detect script injection attacks and report back its findings. The
PageSecurityValidator and FieldSecurityValidator both use this tool. You already know that you can customize it by the
HTMLTagMode and HTMLTags properties, where offered, on those validators. Peter’s Input Security also provides
XML configuration files where you can customize the HTML and Script Detection Engine.

The HTML and Script Detection Engine is designed to detect most script injection attacks. To do this, it requires a
knowledge of what the hacker is looking for. It gets that knowledge from the following sources:

 The <illegaltags> section of the Peter’s Input Security configuration files is a list of HTML tags that are never
allowed in any input. See “HTML Tags That Are Never Permitted”.

 The <illegalattributes> section of the Peter’s Input Security configuration files is a list of HTML tag attribute
names that are never allowed in any HTML tag. See “HTML Attributes That Are Never Permitted”.

 The <illegalattributecontents> section of the Peter’s Input Security configuration files is a list of
javascript code and other elements found within any HTML attribute that is never allowed in any input. See “Javascript
Code and Attribute Contents That Are Never Permitted”.

 The <customscriptexpression> section of the Peter’s Input Security configuration files allows you to define
your own rules, based upon regular expressions. See “Creating Your Own Rules”.

All of this power comes with a disadvantage: the HTML and Script Detection Engine is CPU intensive. In other words, it
takes time. It uses complex regular expressions to find the words and patterns that it considers an attack. Here are several
ways to limit the impact of the time used:

 Limit the inputs passed in. The Security Analysis Report makes recommendations when using script detection is not
necessary.

 Tune the properties and methods of the PeterBlum.DES.Security.Globals class.
FindScriptInjection() uses regular expressions to search text. Regular expressions run faster with smaller
expressions. For example, if <illegaltags> contains 10 items, it will run much slower than when looking for 3
items.

 On multiline textboxes that allow a large amount of text, consider neutralizing these fields and disabling script injection
detection on them.

The HTML and Script Detection Engine itself is the FindScriptInjection() method on the
PeterBlum.DES.Security.Globals class. It is a static/shared method that you too can use.

Click on any of these topics to jump to them:

 HTML Tags That Are Never Permitted

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalTags Programmatically

 HTML Attributes That Are Never Permitted

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalAttributes Programmatically

 Javascript Code and Attribute Contents That Are Never Permitted

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalAttributeContents Programmatically

 Creating Your Own Rules

 Using the Peter’s Input Security Configuration Files

 Adding Rules Programmatically

 FindScriptInjection Method

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 241 of 277
http://www.PeterBlum.com

HTML Tags That Are Never Permitted
The <illegaltags> section of each Peter’s Input Security configuration file contains a list of HTML tag names that are
never permitted on any input in this site. Each item must contain only the tag name, not the < or > characters.

For example, if this list contains the string “script”, the <script> tag will never be permitted in any input.

The HTML and Script Detection Engine performs a case insensitive match against each item that you supply.

There is an extensive list of default values. Look at the <illegaltags> section of the master.config file for this list.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalTags Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 242 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are

located in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <illegaltags> section.

3. To add an item, add this to the <illegaltags> section.

<item action="add">value</item>

 Set the value to the illegal tag.

 You can use a regular expression for the value. If you do, add the attribute regex="true".

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <illegaltags> section of custom.config. Set
action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 243 of 277
http://www.PeterBlum.com

Modifying IllegalTags Programmatically
The <illegaltags> are loaded into the static/shared property PeterBlum.DES.Security.Globals.IllegalTags which is a
System.Collections.Specialized.StringCollection object. You can modify the elements within this
property as the application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.IllegalTags.Add("your text")

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 244 of 277
http://www.PeterBlum.com

HTML Attributes That Are Never Permitted
The <illegalattributes> section of each Peter’s Input Security configuration file contains a list of HTML attribute
names that are never permitted in any HTML tag throughout this site. Of special concern are attributes that can run scripts,
like the DHTML and DOM event handlers, all which start with “on” (like “onclick”). However, you can block other
attributes.

The HTML and Script Detection Engine treats each item as a regular expression and performs a case insensitive match. The
parser will demand that an attribute name is preceded by a valid attribute separator character and followed by “=”.

There is one default value, a regular expression covering all event handlers (they start with ‘on’). Look at the
<illegaltags> section of the master.config file for this list.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalAttributes Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 245 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are

located in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <illegalattributes> section.

3. To add an item, add this to the <illegalattributes> section.

<item action="add">value</item>

 Set the value to the illegal attribute.

 You can use a regular expression for the value. If you do, add the attribute regex="true".

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <illegalattributes> section of
custom.config. Set action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 246 of 277
http://www.PeterBlum.com

Modifying IllegalAttributes Programmatically
The <illegalattributes> are loaded into the static/shared property
PeterBlum.DES.Security.Globals.IllegalAttributes which is a
System.Collections.Specialized.StringCollection object. You can modify the elements within this
property as the application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.IllegalAttributes.Add("your text")

The value can be a regular expression. You have to be careful with the characters that regular expressions define as special
symbols. Click here for a list of those symbols. If you want to use those characters as ordinary symbols, either precede them
by a slash (\) or pass your string into System.Text.RegularExpressions.Regex.Escape().

For example, the period is a special character. If you want to define the string “A.B” where period is an ordinary character,
either enter “A\.B” or call System.Text.RegularExpressions.Regex.Escape("A.B").

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtextregularexpressionsregexclassescapetopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 247 of 277
http://www.PeterBlum.com

Javascript Code and Attribute Contents That Are Never Permitted
The <illegalattributecontents> section of each Peter’s Input Security configuration file contains a list of strings
that are found inside an HTML attribute but are never permitted on any input throughout this site. In addition, you can
declare any javascript that you don’t want in any input, not just inside an attribute or HTML tag.

Text like this may be an attack:

attr1="javascript: (something)"
attr2="document.location.url=(something)"
attr3="var vD = document;vD.cookie (do something)"

The HTML and Script Detection Engine treats each item as a regular expression and performs a case insensitive match. It
does not care what precedes or follows each item.

There is an extensive list of default values. Look at the <illegalattributecontents> section of the master.config
file for this list.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Modifying IllegalAttributeContents Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 248 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open a Peter’s Input Security configuration file. The Peter’s Input Security configuration files are located

in the DES\Security Config Files folder of your web application.

 The master.config file contains the default settings.

 If you want to keep your changes separate from the factory defaults, use the custom.config file.

 You are allowed to edit any configuration file.

Note: If PeterBlum.com needs to change the default configuration, it will release an update file with a unique file
name, such as “master 20040705.config”. This will protect any edits that you make to existing config files. You can
edit these update files as well.

2. Locate the <illegalattributecontents> section.

3. To add an item, add this to the <illegalattributecontents> section.

<item action="add">value</item>

 Set the value to the illegal attribute content or javascript.

 You can use a regular expression for the value. If you do, add the attribute regex="true".

4. To remove an item that is a factory default:

 If you are using the custom.config file, copy the item into the <illegalattributecontents> section of
custom.config. Set action="remove".

 If you are using any other file, set action="none".

5. Restart your web application to load the changes.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 249 of 277
http://www.PeterBlum.com

Modifying IllegalAttributeContents Programmatically
The <illegalattributecontents> are loaded into the static/shared property
PeterBlum.DES.Security.Globals.IllegalAttributeContents which is a
System.Collections.Specialized.StringCollection object. You can modify the elements within this
property as the application starts up.

Within the SetupInputSecurity() method, add your item to this property as follows:

PeterBlum.DES.Security.Globals.IllegalAttributeContents.Add("your text")

The value can be a regular expression. You have to be careful with the characters that regular expressions define as special
symbols. Click here for a list of those symbols. If you want to use those characters as ordinary symbols, either precede them
by a slash (\) or pass your string into System.Text.RegularExpressions.Regex.Escape().

For example, the period is a special character. If you want to define the string “A.B” where period is an ordinary character,
either enter “A\.B” or call System.Text.RegularExpressions.Regex.Escape("A.B").

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.html�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtextregularexpressionsregexclassescapetopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 250 of 277
http://www.PeterBlum.com

Creating Your Own Rules
You can add your own rules to detect script injection attacks with this method. Your rules are regular expressions which look
at the full text of each input with a case insensitive match.

Your expressions are defined along with an error message to log when detected.

Add your rules to the <customscriptexpressions> section of the custom.config file or by using the
CustomScriptExpression() method.

Click on any of these topics to jump to them:

 Using the Peter’s Input Security Configuration Files

 Adding Rules Programmatically

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 251 of 277
http://www.PeterBlum.com

Using the Peter’s Input Security Configuration Files
1. In a text editor, open the custom.config file to edit. It is located in the DES\Security Config Files folder of your

web application.

2. Locate the <customscriptexpressions> section.

3. Add this to the <customscriptexpressions> section.

<item message="message" errorcode="number" severeerror="true|false"> regular
expression</item>

 The message= attribute must contain the error message that appears in logs when this expression is matched.

 The errorcode= attribute is an optional error code. It must be an integer. If you supply a value other than 0, it
appears in the log files and the AttackResults object returned by FindScriptInjection(). If 0 or the
attribute is not supplied, the error code returned is 1900. The range 1902 – 1999 is reserved for your error codes.

 The severeerror= attribute determines if the error is severe or not. When true, it is severe. The
FieldSecurityValidator.ScriptCommunicationMode property uses severity with some of its settings.

 You can learn about the syntax of regular expressions here.

For example:

<item message="The javascript function 'alert(' was found"
 errorcode="1930" severeerror="true">alert\(</item>

4. Restart your web application to load the changes.

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 252 of 277
http://www.PeterBlum.com

Adding Rules Programmatically

CustomScriptExpression Method

You can add your own rules to detect script injection attacks with the
PeterBlum.DES.Security.Globals.CustomScriptExpression() method. Your rules are regular
expressions which look at the full text of each input with a case insensitive match.

Your expressions are defined along with an error message to log when detected.

You can call this for as many expressions as needed.

[C#]

public static void CustomScriptExpression(
 string pExpression,
 string pErrorMessage, int pErrorCode, bool pSevereError)

[VB]

Public Shared Sub CustomScriptExpression(_
 ByVal pExpression As String, _
 ByVal pErrorMessage As String, _
 ByVal pErrorCode As Integer, _
 ByVal pSevereError As Boolean)

Parameters

pExpression

Your regular expression. Click here for help on regular expressions. The expressions entered are not modified in any
way by this engine. The FindScriptInjection() method uses them with a case insensitive match that
searches multiline text.

pErrorMessage

The error message that will be written into the logs within the “{DETAILS}” token.

pErrorCode

An optional error code. If you supply a value other than 0, it appears in the log files and the AttackResults
object returned by FindScriptInjection(). If 0, the error code returned is 1900. The range 1902 – 1999 is
reserved for your error codes.

pSevereError

Determines if the error is severe or not. When true, it is severe. The
FieldSecurityValidator.ScriptCommunicationMode property uses severity with some of its settings.

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 253 of 277
http://www.PeterBlum.com

FindScriptInjection Method
PeterBlum.DES.Security.Globals.FindScriptInjection() searches text for script injection patterns. You
pass in the HTMLTagMode and HTMLTag parameters which are the same as the properties on the PageSecurityValidator and
FieldSecurityValidator.

It uses all of the script related sections of the Peter’s Input Security configuration files to determine an attack is present:

 The <illegaltags> section of the Peter’s Input Security configuration files is a list of HTML tags that are never
allowed in any input. See “HTML Tags That Are Never Permitted”.

 The <illegalattributes> section of the Peter’s Input Security configuration files is a list of HTML tag attribute
names that are never allowed in any HTML tag. See “HTML Attributes That Are Never Permitted”.

 The <illegalattributecontents> section of the Peter’s Input Security configuration files is a list of
javascript code and other elements found within any HTML attribute that is never allowed in any input. See “Javascript
Code and Attribute Contents That Are Never Permitted”.

 The <customscriptexpression> section of the Peter’s Input Security configuration files allows you to define
your own rules, based upon regular expressions. See “Creating Your Own Rules”.

It returns a PeterBlum.DES.Security.AttackResults object when an error is found. It returns null/nothing
when there is no error. The AttackResults object includes an error message, error code, and up to 2 values taken from
the data that identify what triggered the error.

It is used within the PageSecurityValidator and FieldSecurityValidator controls. You can use it as well. For example, you
may apply it to input from a web service.

This method uses CPU intensive regular expressions. See the introduction to this section for suggestions on optimizing it.

 [C#]

public static string FindScriptInjection(
 string pText,
 PeterBlum.DES.Security.HTMLTagMode pHTMLTagMode,
 string pHTMLTags)

[VB]

Public Shared Function FindScriptInjection(_
 ByVal pText As String, _
 ByVal pHTMLTagMode As PeterBlum.DES.Security.HTMLTagMode, _
 ByVal pHTMLTags As String) As String

Parameters

pText

The text to evaluate.

pHTMLTagMode

Determines which tags in the text are legal or illegal. The enumerated type
PeterBlum.DES.Security.HTMLTagMode has these values:

o AllIllegal_NoLTGT – Do not allow any < or > characters, regardless of if they form tags.

o AllIllegal – All tags found are illegal.

o AllLegal – All tags found are legal unless they are defined in the <illegaltags> section of the
master.config file.

o LegalExceptTags – All tags are legal except those defined in the pHTMLTags parameter and in the
<illegaltags> section of the master.config file.

o IllegalExceptTags – All tags are illegal except those in the pHTMLTags parameter.

This is the default setting for this property.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 254 of 277
http://www.PeterBlum.com

pHTMLTags

When detecting script injection attacks, this can contain a list of HTML tag names. The pHTMLTagMode parameter
determines how to use these tags.

Always omit the < and > characters. Separate each tag with semicolons. Do not include spaces. For example, when
looking for <a>,
 and use “a;br;img”.

Case insensitive testing is performed.

Return value

When there is no error, it returns null/nothing. Otherwise, it returns a
PeterBlum.DES.Security.AttackResults object.

Example

Suppose the user has written a web service that is passed a string to store in their database. They use
FindScriptInjection() before storing it. In this example, pDataInput contains the text.

[C#]

PeterBlum.DES.Security.AttackResults vAttackResults =
 PeterBlum.DES.Security.Globals.FindScriptInjection(
 pDataInput, PeterBlum.DES.Security.HTMLTagMode.AllIllegal, "");
if (vAttackResults == null)
{
 // save it
}
else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(this.Page,
 PeterBlum.DES.Security.AttackType.ScriptInjection, "",
 PeterBlum.DES.Security.AttackInputType.Other1, "Web service",
 "", pDataInput,
 vAttackResults); // assumes this redirects to another page to block

[VB]

Dim vAttackResults As PeterBlum.DES.Security.AttackResults = _
 PeterBlum.DES.Security.Globals.FindScriptInjection(_
 pDataInput, PeterBlum.DES.Security.HTMLTagMode.AllIllegal, "")
If vAttackResults Is Nothing Then
 ' save it

Else
 PeterBlum.DES.Security.LogAndRespond.Current.TrackAttack(Me.Page, _
 PeterBlum.DES.Security.AttackType.ScriptInjection, "", _
 PeterBlum.DES.Security.AttackInputType.Other1, "Web service", _
 "", pDataInput, _
 vAttackResults) ' assumes this redirects to another page to block
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 255 of 277
http://www.PeterBlum.com

Securing a Web Service And Other Inputs
If you have strings coming from a source that you cannot trust, you should check them for hacking attempts including SQL
injection, script injection and tampering. Peter’s Input Security provides the FindSQLInjection() and
FindScriptInjection() methods to handle injection. It provides several methods to clean up the text that may contain
injection attacks. You are responsible for creating code that detects tampering (illegal values).

Methods for Cleaning Input On PeterBlum.DES.Security.Globals
The PeterBlum.DES.Security.Globals class provides several static/shared methods that can assist you when you
clean up strings. They are similar to the methods on PageSecurityValidator. In fact, PageSecurityValidator and
TextLengthSecurityValidator use these methods.

Click on any of these topics to jump to them:

 CleanupInput Method (with length check)

 CleanupInput Method (without length check)

 CleanupInputKeepingTags Method

 CleanupInputKeepingTags2 Method

 HTMLDecodePreserveTags Method

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 256 of 277
http://www.PeterBlum.com

CleanupInput Method (with length check)
PeterBlum.DES.Security.Globals.CleanupInput() modifies the text to limit SQL injection and stop script
injection. Use this to neutralize SQL injection when using ad-hoc SQL statements. However, it is far better to switch to using
parameterized SQL statements and stored procs. Because script injection is cleaned up using Server.HtmlEncode(), it
is fully neutralized.

For SQL injection, a single quote is replaced by a pair of single quotes. Each pair of minus characters is removed. (“--” is a
SQL comment.)

For script injection, Server.HtmlEncode()is used. If you want to preserve some tags, use
CleanupInputKeepingTags() instead of this method.

Since the length of the text may increase, you can establish a size limit. If that limit is exceeded, you can determine how you
will learn about this: by returning a null value or throwing an exception.

[C#]

public static string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript,
 int pMaxLength, PeterBlum.DES.Security.LengthFailure pLengthFailure)

 [VB]

Public Shared Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean,
 ByVal pMaxLength As Integer,
 ByVal pLengthFailure As PeterBlum.DES.Security.LengthFailure) As String

Parameters

pOriginal

The string to clean up.

pCleanupSQL

When true, cleanup SQL. That means replace single quotes to pairs of single quotes.

Only use this with ad-hoc SQL statements. When using parameterized SQL statements and stored procs, leave this
false. See “Neutralizing SQL Injection”.

pCleanupScript

When true, cleanup scripts. It uses Server.HtmlEncode().

pMaxLength

The maximum length of the text. Beyond this, use the rule from pLengthFailure to communicate an error. If 0, the
length is not checked.

pLengthFailure

When the length is exceeded, the action to take. The enumerated type
PeterBlum.DES.Security.LengthFailure has these values:

o Exception – throw an exception of type PeterBlum.DES.DESException

o Null – Return value of null/nothing.

Return value

The cleaned up string. If the length was exceeded, expect a value of null/nothing or for the method to throw a
PeterBlum.DES.DESException exception.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 257 of 277
http://www.PeterBlum.com

Example: Return null/nothing

This example has the string to clean up in the variable vDirtyText. It cleans up both SQL and script injection. It imposes a 40
character limit and returns null when there is a length error.

[C#]

string vCleanValue = PeterBlum.DES.Security.Globals.CleanupInput(vDirtyText,
 true, true, 40, PeterBlum.DES.Security.LengthFailure.Null);
if (vCleanValue != null)
{
 // code to save the data
}

[VB]

Dim vCleanValue As String = PeterBlum.DES.Security.Globals.CleanupInput(_
 vDirtyText,True, True, 40, PeterBlum.DES.Security.LengthFailure.Null)
If Not vCleanValue Is Nothing Then
 ' code to save the data
End If

Example: Throw Exception

This example has the string to clean up in the variable vDirtyText. It cleans up both SQL and script injection. It imposes a 40
character limit and throws an exception when there is a length error.

 [C#]

try
{
 string vCleanValue = PeterBlum.DES.Security.Globals.CleanupInput(
 vDirtyText,
 true, true, 40, PeterBlum.DES.Security.LengthFailure.Exception);
 // code to save the data here
}
catch (PeterBlum.DES.DESException)
{
 // handle the error
}

[VB]

Try
 Dim vCleanValue As String = PeterBlum.DES.Security.Globals.CleanupInput(_
 vDirtyText,_
 True, True, 40, PeterBlum.DES.Security.LengthFailure.Exception)
 ' code to save the data
Catch vExp As PeterBlum.DES.DESException
 ' handle the error
End Try

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 258 of 277
http://www.PeterBlum.com

CleanupInput Method (without length check)
PeterBlum.DES.Security.Globals.CleanupInput() modifies the text to limit SQL injection and stop script
injection. Use this to neutralize SQL injection when using ad-hoc SQL statements. However, it is far better to switch to using
parameterized SQL statements and stored procs. Because script injection is cleaned up using Server.HtmlEncode(), it
is fully neutralized.

For SQL injection, a single quote is replaced by a pair of single quotes. Each pair of minus characters is removed. (“--” is a
SQL comment.)

For script injection, Server.HtmlEncode()is used. If you want to preserve some tags, use
CleanupInputEncodeInvalidTags() or CleanupInputRemoveInvalidTags() instead of this method.

This method differs from the earlier definition of CleanupInput() as it doesn’t check the length.

[C#]

public static string CleanupInput(string pOriginal,
 bool pCleanupSQL, bool pCleanupScript)

[VB]

Public Shared Function CleanupInput(ByVal pOriginal As String,
 ByVal pCleanupSQL As Boolean , ByVal pCleanupScript As Boolean) As String

Parameters

pOriginal

The string to clean up.

pCleanupSQL

When true, cleanup SQL. That means replace single quotes to pairs of single quotes.

Only use this with ad-hoc SQL statements. When using parameterized SQL statements and stored procs, leave this
false. See “Neutralizing SQL Injection”.

pCleanupScript

When true, cleanup scripts. It uses Server.HtmlEncode().

Return value

The cleaned up string.

Example

This example has the string to clean up in the variable vDirtyText. It cleans up both SQL and script injection.

[C#]

string vCleanValue = PeterBlum.DES.Security.Globals.CleanupInput(
 vDirtyText,true, true);

[VB]

Dim vCleanValue As String = PeterBlum.DES.Security.Globals.CleanupInput(_
 vDirtyText, True, True)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlEncodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 259 of 277
http://www.PeterBlum.com

CleanupInputKeepingTags Method
PeterBlum.DES.Security.Globals.CleanupInputKeepingTags() cleans up input to prevent script
injection attacks by encoding or removing invalid tags while preserving tags from a list that you supply. It does not handle
clean up for SQL injection. You supply a list of tags names that you want to preserve in their original state.

Note: If you want to supply a list of tags to be removed, use CleanupInputKeepingTags2().

The clean up keeps any tags from that list intact, encodes or removes all other tags, and encodes the rest of the text. If a valid
tag has an illegal attribute, the entire tag is encoded or removed. This further protects you against attacks through your valid
tags.

This method uses the values in the <illegalattributes> and <illegalattributecontents> sections in the
Peter’s Input Security configuration files to determine if there are illegal attributes in tags that you want to preserve.

When you load the encoded text and insert it into a web page, you will need to HtmlDecode it. While you can use
Server.HtmlDecode(), consider using the
PeterBlum.DES.Security.Globals.HtmlDecodePreserveTags() method which handles some special cases
formed by keeping some tags intact.

[C#]

public static string CleanupInputKeepingTags(
 string pOriginal,
 string pValidTags,
 PeterBlum.DES.Security.CleanupTagRule pCleanupTagRule)

[VB]

Public Shared Function CleanupInputKeepingTags(
 ByVal pOriginal As String,
 ByVal pValidTags As String,
 ByVal pCleanupTagRule As PeterBlum.DES.Security.CleanupTagRule)
 As String

Parameters

pOriginal

The string to clean up.

pValidTags

A semicolon-delimited list of tag names that are permitted. All tags not specified here will be encoded. Do not
include the < or > characters. Do not use spaces. For example, to keep <a>,
, and <p> tags, use “a;br;p”.

The <script> tag is never permitted. An exception is thrown if one is supplied. The <object>, <applet>,
and <embed> are permitted but should be used VERY carefully.

pCleanupTagRule

Determines if it encodes or removes illegal tags. The enumerated type
PeterBlum.DES.Security.CleanupTagRule has these values:

o RemoveTag – Removes the tag.

o EncodeTag – Encodes the tag.

Return value

The cleaned up string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 260 of 277
http://www.PeterBlum.com

Example

This example has the original text in vDirtyText. It permits these tags:
, , and <p>. It encodes illegal
tags.

[C#]

string vCleanValue = PeterBlum.DES.Security.Globals.CleanupInputKeepingTags(
 vDirtyText, "br;span;font;p",
 PeterBlum.DES.Security.CleanupTagRule.Encode);

[VB]

Dim vCleanValue As String = _
 PeterBlum.DES.Security.Globals.CleanupInputKeepingTags(_
 vDirtyText, "br;span;font;p", _
 PeterBlum.DES.Security.CleanupTagRule.Encode)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 261 of 277
http://www.PeterBlum.com

CleanupInputKeepingTags2 Method
PeterBlum.DES.Security.Globals.CleanupInputKeepingTags2() cleans up input to prevent script
injection attacks by encoding or removing invalid tags from a list that you supply while preserving tags the rest. It does not
handle clean up for SQL injection. You supply a list of tags names that you want to encode or remove.

Note: If you want to supply a list of tags to be preserved, use CleanupInputKeepingTags().

The clean up keeps any tags not found in that list intact, encodes or removes tags on the list, and encodes the rest of the text.
If a valid tag has an illegal value, the entire tag is encoded or removed. This further protects you against attacks through your
valid tags. Illegal value are determined from the <illegalattributes> and <illegalattributecontents>
sections in the Peter’s Input Security configuration files.

When you load the encoded text and insert it into a web page, you will need to HtmlDecode it. While you can use
Server.HtmlDecode(), consider using the
PeterBlum.DES.Security.Globals.HtmlDecodePreserveTags() method which handles some special cases
formed by keeping some tags intact.

[C#]

public static string CleanupInputKeepingTags2(
 string pOriginal,
 string pInvalidTags,
 bool pAddIllegalTags,
 PeterBlum.DES.Security.CleanupTagRule pCleanupTagRule)

[VB]

Public Shared Function CleanupInputKeepingTags2(
 ByVal pOriginal As String,
 ByVal pInvalidTags As String,
 ByVal pAddIllegalTags As Boolean,
 ByVal pCleanupTagRule As PeterBlum.DES.Security.CleanupTagRule)
 As String

Parameters

pOriginal

The string to clean up.

pInvalidTags

A semicolon-delimited list of tag names that should be encoded or removed. All tags not specified here will be
preserved unless they have an illegal attribute. Do not include the < or > characters. Do not use spaces. For example,
to keep <a>,
, and <p> tags, use “a;br;p”.

pAddIllegalTags

When true, all of the tags defined in <illegaltags> are also considered invalid. When false, you should
include the <script> tag and others that you consider invalid in the pInvalidTags parameter.

pCleanupTagRule

Determines if it encodes or removes illegal tags. The enumerated type
PeterBlum.DES.Security.CleanupTagRule has these values:

o RemoveTag – Removes the tag.

o EncodeTag – Encodes the tag.

Return value

The cleaned up string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 262 of 277
http://www.PeterBlum.com

Example

This example has the original text in vDirtyText. It encodes these tags: <input>, <div>, <textarea> and <bgsound>.
It also encodes all tags defined in <illegaltags>.

[C#]

string vCleanValue = PeterBlum.DES.Security.Globals.CleanupInputKeepingTags2(
 vDirtyText, "input;div;textarea;bgsound", true,
 PeterBlum.DES.Security.CleanupTagRule.Encode);

[VB]

Dim vCleanValue As String = _
 PeterBlum.DES.Security.Globals.CleanupInputKeepingTags2(_
 vDirtyText, "input;div;textarea;bgsound", True,
 PeterBlum.DES.Security.CleanupTagRule.Encode)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 263 of 277
http://www.PeterBlum.com

HTMLDecodePreserveTags Method
PeterBlum.DES.Security.Globals.HTMLDecodePreserveTags() is similar to Server.HTMLDecode()
but preserves the contents of already unencoded tags. This is the reverse of CleanupInputKeepingTags() when it
encodes illegal tags. It does not decode HTML symbols enclosed in HTML tags.

Consider this text:

<img src='url' alttext='<i>picture</i>'/>

You want to convert the b tag but not anything in the img tag. This method does it safely.

[C#]

public static string HTMLDecodePreserveTags(string pEncodedText)

[VB]

Public Shared Function HTMLDecodePreserveTags(ByVal pEncodedText As String)
 As String

Parameters

pEncodedText

The encoded text to decode.

Return value

The decoded string.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemWebHttpServerUtilityClassHtmlDecodeTopic.asp�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 264 of 277
http://www.PeterBlum.com

Slowing Down Attacks
While hackers are attacking your site, they are consuming resources – memory, CPU time, files, your database, and more. If
they are using software to launch many attacks within a short period of time, this use of resources can result in much slower
performance on your server, affecting your customer base. At its worse, they reach the limit of your resources, stopping your
site. In effect, this is a “denial of service” attack.

An attacker may actually try to launch a denial of service attack on your site through your inputs. They can make an educated
guess that each time they post back a page with errors on it, your site is logging that fact. They will seek to fill up your logs –
event logs, files, and databases.

Peter’s Input Security offers a defense against these situations through its Slow Down Manager. The Slow Down Manager,
defined in the class PeterBlum.DES.Security.SlowDownMgr, counts attacks on each page from a specific IP
address. If it reaches a limit that you establish, it starts redirecting that page to another page each time that IP address
attempts to access the page. The attacker no longer has access to the page they are attacking. After a period of time that you
establish, it restores access. Yet, its ready to deny access once again at the next attack, potentially changing the page that is
shown and the time they are blocked.

Here are some benefits of using the Slow Down Manager:

 The Slow Down Manager can frustrate some hackers enough to deter them. Hackers who have to wait several minutes to
get to the page that they are hacking are more likely to give up.

 Hackers who use automated software to attack a page may have to restructure their software just to handle the
unexpected page that is shown.

 Pages that accept passwords are often attacked using brute force attempts to discover the password. You can tell the
Slow Down Manager about each failed attempt to let it redirect to another page after a certain number of failed attempts.
It will continue to prevent access to the page for a user defined time limit.

Click on any of these topics to jump to them:

 Features of the Slow Down Manager

 Setting Up The Slow Down Manager

 Handling Proxy Servers

 Quick Blocking

 SlowDownMgr Properties

 SlowDownMgr Methods

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 265 of 277
http://www.PeterBlum.com

Features of the Slow Down Manager
 You can customize its settings in an XML config file called IP.config, located in the DES\Security Config Files

folder.

 You define a rule that instructs after how many attacks it redirects to another page. That rule includes a timelimit. Until
that timelimit is reached, the page will automatically continue to redirect to the other page each time that it is requested.

 You can have multiple rules, with escalating time limits and different pages shown. This allows you to start with a
friendly message where the user is no threat to more aggressive messages. For example, at 3 attacks, go to
“Friendly.aspx” for 1 minutes. After 6 attacks, go to “GoAway.aspx” for 10 minutes.

 Each PageSecurityValidator interacts with the Slow Down Manager automatically. If the page it is on is blocked to the
current user, it automatically redirects to the page you specified in the rules. Each time any of Peter’s Input Security’s
validators detect an attack, the PageSecurityValidator delivers that information to the Slow Down Manager so it can
count each attack.

 Different pages may need different rules. For example, a login page could redirect to a page giving instructions about
how to retrieve their password while a data entry page may indicate that the site is busy and to try again in a few
minutes. Rules each have a group name. The PageSecurityValidator.SlowDownRuleGroup can specify which group of
rules to use.

 Identifies unique users by their IP address. Keeps a list of attacks for each known IP address. It uses both the
ServerVariables["REMOTE_ADDR"] and ServerVariables[HTTP_X_FORWARDED_FOR] values to establish this
identity.

 Handles issues involving proxy servers where the proxy server can fool the software into thinking each attack is coming
from a unique IP address. Normally that would make it hard to block the user. Peter’s Input Security has a number of
rules and configuration settings to defend against attacks from these proxy servers. See “Handling Proxy Servers”.

 It blocks only the page that is under attack. That limits the impact of proxy servers that randomize IP addresses but have
numerous legitimate clients who are trying to use your site. They may be blocked in a group but only for 1 page.

 It can identify a specific IP address as a frequent attacker and start blocking all pages for it after one attack on each page
the attacker visits. For example, normally you block each page after 5 attacks. You have established the “quick block”
setting to take over after 6 attacks on the page. So they have hit your redirection page, waited for it to reach its time limit,
then resumed their attack. The “quick block” setting is now activated for their IP address and all future pages that they
visit will be blocked on the first attempt.

 Within the IP.config file, you can define lists of IP addresses with known properties: good proxy servers, bad proxy
servers, and those needing the quick block feature.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 266 of 277
http://www.PeterBlum.com

Setting Up The Slow Down Manager
Here are the steps to set up the Slow Down Manager.

1. Create pages that will appear when the Slow Down Manager blocks an attacker.

You will have to use your creativity and knowledge of building pages. You can put the pages in any location on your
web application, although it may be convenient to put them into a common folder. Here are some ideas for these pages.

 A friendly warning, used on any data entry page, that is first shown after several attacks. This warning probably
should not suggest to the user that they are doing something bad. Tell them that they continue to have data entry
problems and offer suggestions to solve the problem.

 A friendly warning, used on a password page, to assist them in retrieving their forgotten password.

 A warning that is shown after the friendly warning doesn’t stop them. This can simply suggest that the page is not
available at this time.

2. Open the IP.config file in the DES\Security Config Files folder using an editor.

3. Locate the <slowdownrules> section.

4. Define rules. Instructions are given in the file.

This example shows two groups. One is used for data entry pages and has no group name. The other is used on password
pages and has a group name of "password".

This example’s strategy is to use a friendly page after 3 attacks. It has a 20 second time limit. Then a warning page is
used after 6, with a 60 second time limit. Then the warning page is used again after 8 attempts, but with a 20 minute
(1200 second) time limit. Finally, the user is redirected off site to the FBI web site after 9 attempts. It logs attacks on the
3rd and 4th rules are reached.

<slowdownrules>
 <item group="" redirecturl="~/Errors/DataEntryHelp.aspx" attackstostart="3"
 timelimit="20" logfirstattack="false" />
 <item group="" redirecturl="~/Errors/Warning.aspx" attackstostart="6"
 timelimit="60" logfirstattack="false" />
 <item group="" redirecturl="~/Errors/Warning.aspx" attackstostart="8"
 timelimit="1200" logfirstattack="true" />
 <item group="" redirecturl="http://www.fbi.gov" attackstostart="9"
 timelimit="1200" logfirstattack="true" />

 <item group="password" redirecturl="~/Errors/PasswordHelp.aspx"
 attackstostart="3" timelimit="20" logfirstattack="false"/>
 <item group="password" redirecturl="~/Errors/Warning.aspx" attackstostart="6"
 timelimit="60" logfirstattack="false"/>
 <item group="password" redirecturl="~/Errors/Warning.aspx" attackstostart="8"
 timelimit="1200" logfirstattack="true" />
 <item group="password" redirecturl="http://www.fbi.gov" attackstostart="9"
 timelimit="1200" logfirstattack="true" />
</slowdownrules>

5. Each page that you want to use the Slow Down Manager needs a PageSecurityValidator with the SlowDownRuleGroup
property set correctly. The PageSecurityValidator tracks attacks with the SlowDownMgr class and uses it to redirect to
the other page when the SlowDownMgr decides to block the user.

Most pages should already have the PageSecurityValidator. Its SlowDownRuleGroup property defaults to "". If you
have another group name that should be used, set it.

On a password page, there are actually two categories for possible attacks. One for SQL and script injection attacks; the
other for attempts to guess the password. On such a page, use the group for SQL and script injection attacks. Each will
use a different group name.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 267 of 277
http://www.PeterBlum.com

6. On pages where you want to track brute force attacks (such as password pages), do the following:

a. Write your code that detects an error, such as the password was unknown. Have it call SlowDownMgr.LogAttack()
with the rule group as shown here:

[C#]

PeterBlum.DES.Security.SlowDownMgr.Current.LogAttack(this.Page, "groupname");

[VB]

PeterBlum.DES.Security.SlowDownMgr.Current.LogAttack(Me.Page, "groupname")

b. If you also want to log the attacks within LogAndRespond Engine after the Slow Down Manager blocks the user, be
sure that you set the logfirstattack= attribute to true on rules where logging should occur. See the example in
step 4.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 268 of 277
http://www.PeterBlum.com

Handling Proxy Servers
IP addresses come from the HTTP block that supplies them in these ServerVariables keys:

 REMOTE_ADDR – The main IP address. It is always valid. If the user is behind a proxy server, it is the IP address of
the proxy server.

 HTTP_X_FORWARDED_FOR – A second IP address used when the main IP address is a proxy server. It reflects the IP
address of the user behind the proxy server.

Normally, these two values are enough to uniquely identify a single computer and block it. However, some proxy servers are
configured to hide or randomize the HTTP_X_FORWARDED_FOR address, to provide privacy. See
http://www.freeproxy.ru/en/free_proxy/faq/proxy_anonymity.htm.

These proxy servers need special handling. Peter’s Input Security is equipped with the ability to identify proxy servers as
good (with a valid HTTP_X_FORWARDED_BY) or bad (with an invalid HTTP_X_FORWARDED_BY). For a good proxy
server, Peter’s Input Security will always look at the HTTP_X_FORWARDED_BY when detecting an IP address to block.
For a bad proxy server, Peter’s Input Security will only look at the REMOTE_ADDR (the proxy server’s own IP), effectively
blocking all HTTP_X_FORWARDED_BY IP addresses. Peter’s Input Security can even detect a proxy server that is
randomizing HTTP_X_FORWARDED_BY and automatically identify it as bad. However, it needs your help in some cases.

Peter’s Input Security keeps two lists of proxy server IP addresses.

 PeterBlum.DES.Security.Globals.GoodProxyServerIPs (System.Collection.StringCollection) – This is a list of good
proxy server IPs. They will block attacks using both the REMOTE_ADDR and HTTP_X_FORWARDED_BY IP
addresses.

It is loaded from the <goodproxyserverips> section of the IP.config file. Add a proxy server IP address to this
list when Peter’s Input Security is treating the IP address as a bad proxy server and you know that each unique
HTTP_X_FORWARDED_BY should be tracked individually.

See the <goodproxyserverips> section of the IP.config file for details and an example.

 PeterBlum.DES.Security.Globals.BadProxyServerIPs (System.Collection.StringCollection) – This is a list of bad
proxy server IPs. They will block attacks using only the REMOTE_ADDR IP address, causing all users behind that
proxy server to be blocked.

It is loaded from the <badproxyserverips> section of the IP.config file. Peter’s Input Security automatically adds
to this list at runtime as it detects a randomizing proxy server. However, it doesn’t update the IP.config file. So each time
your web application restarts, it loses what it added.

Add a proxy server IP address to this list when you know the proxy server generates invalid
HTTP_X_FORWARDED_BY values and you want this information to be maintained between application restarts.

See the <badproxyserverips> section of the IP.config file for details and an example.

The SlowDownMgr class has several properties that assist in handling proxy servers. You can set them programmatically or
within the <slowdownmgr> section of the IP.config file.

 DetectRandomProxyIPLimit (Integer) – Part of a monitoring system to detect bad proxy servers. This is the number of
unique IP addresses from ServerVariables["HTTP_X_FORWARDED_FOR"] found within a time limit (from
DetectRandomProxyTimeLimit) before it is considered random.

It defaults to 3.

 DetectRandomProxyTimeLimit (Integer) – The time limit to detect the number of unique attacks from
HTTP_X_FORWARDED_FOR. If there are DetectRandomProxyIPLimit attacks within this time limit, the proxy
server is considered “bad” and added to the PeterBlum.DES.Security.Globals.BadProxyServerIPs collection.

Its value is in seconds. It defaults to 600 seconds (10 minutes).

http://www.freeproxy.ru/en/free_proxy/faq/proxy_anonymity.htm�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 269 of 277
http://www.PeterBlum.com

Quick Blocking
Normally only pages attacked by the hacker will be blocked by the Slow Down Manager. It waits until the number of attacks
exceed your rule’s AttackStartsAt attribute. You can override this rule using the “quick blocking” feature. You set the
SlowDownMgr.QuickBlockAfter property to the number of attacks on one page that will activate this mode. After the
number of attacks on the page has been reached, all other pages will block access after only one attack on them.

QuickBlockAfter is an integer value. If it is 0, it is off. The default is 0. A suggested approach is to assign it to a value
slightly higher than your first warning rule’s AttackStartsAt value. For example, if you start warning users at 5, set this to 6.
This will give them a couple of warnings before blocking your site.

A list of IP addresses that are quick blocked are kept in the static/shared collection
PeterBlum.DES.Security.Globals.QuickBlockIPs. Peter’s Input Security automatically adds to this collection. If you want
to prepopulate it with known hacker IPs, use the <quickblockips> section of the IP.config file. See the file for
documentation.

Note: Peter’s Input Security never writes to the <quickblockips> section.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 270 of 277
http://www.PeterBlum.com

SlowDownMgr Properties
You can set these properties within the <slowdownmgr> section of the IP.config file. See the file for instructions on each
property.

If you prefer to set them programmatically, always use the static/shared property Current, from within your application
startup code, like this:

PeterBlum.DES.Security.SlowDownMgr.Current.QuickBlockAfter = 6

 Current (PeterBlum.DES.Security.SlowDownMgr) – This is a static/shared property. It contains the active
SlowDownMgr object. Use it to interact with the properties and methods offered here.

 ResetAttackCountAfter (Integer) – The number of seconds since the last attack from a specific IP address before
resetting the attack count to 0 on each page. Each page has its own last attack time and attack count. It defaults to 86400
seconds (24 hours).

 SlowDownIPLimit (Integer) – The SlowDownMgr class keeps a list of IP addresses used in attacks since the application
started up. This establishes a maximum number of IP addresses kept in the list. It defaults to 1000.

 SlowDownIPDeleteCount (Integer) –When the SlowDownIPLimit is reached, this is the number of IP addresses to
delete. It always detects IP addresses whose last attack is oldest. It defaults to 50.

 DetectRandomProxyIPLimit (Integer) – See “Handling Proxy Servers”.

 DetectRandomProxyTimeLimit (Integer) – See “Handling Proxy Servers”.

 QuickBlockAfter (Integer) – See “Quick Blocking”.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 271 of 277
http://www.PeterBlum.com

SlowDownMgr Methods
These methods are accessed from the static/shared property Current on SlowDownMgr. For example:

PeterBlum.DES.Security.SlowDownMgr.Current.MethodName()

Click on any of these topics to jump to them:

 DefineSlowDownRule Method

 LogAttack Method

 TryToBlock Method

 GetAttackCount Method

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 272 of 277
http://www.PeterBlum.com

DefineSlowDownRule Method

Defines a slow down rule. Each call creates a new rule. This method is an alternative to using the <slowdownrules>
section of the IP.config file.

Only call this method during application startup.

[C#]

public void DefineSlowDownRule(string pRuleGroup, string pRedirectUrl,
 int pAttacksToStart, int pTimeLimit, bool pLogFirstAttack)

[VB]

Public Sub DefineSlowDownRule(ByVal pRuleGroup As String, _
 ByVal pRedirectUrl As String, ByVal pAttacksToStart As Integer, _
 ByVal pTimeLimit As Integer, ByVal pLogFirstAttack As Boolean)

Parameters

pRuleGroup

A group name. You can have multiple groups of rules where the PageSecurityValidator.SlowDownRuleGroup
property selects the group of rules.

There can be multiple rules with the same group name. Just be sure to use different values in pAttacksToStart.

The empty string ("") is a valid group name. In fact, if you create a default rule with a group name of "", all
PageSecurityValidators will use it until their SlowDownRuleGroup is modified.

pRedirectUrl

A URL to a page that will appear when the requested page is blocked. This parameter must contain a valid URL.

You can use the "~/" token at the start for the web application root. For example, “~/Errors/Warning1.aspx”.

It is strongly recommended that all URLs are complete, either with http://, a lead slash, or "~/" because just using the
page name alone will redirect from the current URL's folder path and your redirection page may not be in that
folder.

pAttacksToStart

The number of attacks from one IP address before this rule is applied. It must be 1 or higher. If you have multiple
rules for one group, each rule should have a different value for this parameter.

pTimeLimit

The number of seconds that the redirect page is shown. It must be 1 or higher.

The user may return to the original page but as soon as that page runs its Page_Load method, the
PageSecurityValidator will detect that the page is still blocked for this time limit and redirect again.

pLogFirstAttack

When true, log the first attack for this rule. It will use the LogAndRespond Engine to log.

When false, the logging feature is not used.

Example

[C#]

PeterBlum.DES.Security.SlowDownMgr.Current.DefineSlowDownRule(
 "", "~/Errors/Warning.aspx", 4, 20, false);

[VB]

PeterBlum.DES.Security.SlowDownMgr.Current.DefineSlowDownRule(_
 "", "~/Errors/Warning.aspx", 4, 20, False)

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 273 of 277
http://www.PeterBlum.com

LogAttack Method

Call to log an attack with the Slow Down Manager. It is automatically called from any of Peter’s Input Security’s built in
validation code. You can call it for your custom code, such as when you are counting the number of invalid attempts on a
login page.

[C#]

public bool LogAttack(Page pPage, string pRuleGroup)

[VB]

Public Function LogAttack(ByVal pPage As Page, ByVal pRuleGroup As String)
 As Boolean

Parameters

pPage

A reference to the Page object.

pRuleGroup

The name of a rule group. When this name does not match any rules, LogAttack() does nothing.

Return value

When true, the page is ready to block access. You should call TryToBlock().

Example

This is the code of a login page. After it determines the login is illegal, it uses LogAttack() for the group “password”.

[C#]

if (CanLogin(vUserName, vPassword))
 // login succeeds. Finish login
else
{
 if (PeterBlum.DES.Security.SlowDownMgr.Current.LogAttack(this.Page, "password"))
 PeterBlum.DES.Security.SlowDownMgr.Current.TryToBlock(this.Page);
}

[VB]

If CanLogin(vUserName, vPassword) Then
 ' login succeeds. Finish login
Else
 If PeterBlum.DES.Security.SlowDownMgr.Current.LogAttack(Me.Page, "password") Then
 PeterBlum.DES.Security.SlowDownMgr.Current.TryToBlock(Me.Page)
 End If
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 274 of 277
http://www.PeterBlum.com

TryToBlock Method

Tests if the page should be blocked. If so, it redirects following your rules. It uses the rule determined by an earlier call to
LogAttack(). This method should be called from two locations:

 After LogAttack() returns true. See the example above.

 In Page_Load(). This happens automatically when the PageSecurityValidator is on the page.

[C#]

public void TryToBlock(Page pPage)

[VB]

Public Sub TryToBlock(ByVal pPage As Page)

Parameters

pPage

A reference to the Page object.

Example

Please see the example for the LogAttack() method, above.

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 275 of 277
http://www.PeterBlum.com

GetAttackCount Method

Gets the number of attacks recorded on this page for the current user.

[C#]

public int GetAttackCount(Page pPage)

[VB]

Public Function GetAttackCount(ByVal pPage As Page) As Integer

Parameters

pPage

A reference to the Page object.

Return value

The number of attacks.

Example

This code is in Page_Load(). The user wants to show an additional Label control with instructions on the page when the
count has reached 4. The Label control is Label1.

[C#]

if (PeterBlum.DES.Security.SlowDownMgr.Current.GetAttackCount(this.Page) >= 4)
 Label1.Visible = true;

[VB]

If PeterBlum.DES.Security.SlowDownMgr.Current.GetAttackCount(Me.Page) >= 4 Then
 Label1.Visible = True
End If

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 276 of 277
http://www.PeterBlum.com

It’s Not Secure Until…
This section is a list of suggestions that will provide more security on your website.

 Keep fully up-to-date on all patches from Microsoft. Microsoft provides this web page to update a computer:
http://windowsupdate.microsoft.com/.

 Supply a “very strong” password for the ‘sa’ account within MS SQL Server. A very strong password is complex,
usually a lengthy combination of letters and digits without any human language terms. For example,
“x934sspqwo33q6mns499”. This kind of password makes it difficult for a hacker to use a brute force attack to access
your database.

 Reduce the rights on all SQL accounts that your web application uses. Allow the minimum rights to run your web site.
Do not allow the accounts that modify the structure of the database.

 Use a very strong password on each account used by your web application.

 Find ways of keeping the connection strings away from your users. They expose the valuable login information. Many
users keep them in web.config. Assume that the hacker will find a way to retrieve this file. Consider encrypting the
connection string if its in web.config. Consider moving it into the registry, using encryption there too. Microsoft also
provides the Data Protection Application Programming Interface (DPAPI) to secure connection strings:
http://msdn2.microsoft.com/en-us/library/ms998280.aspx.

 Don’t create table and field names that hackers can guess. Most database hacks need to know the names of tables and
fields. The hacker can often make educated guesses to their names. For example, if they want to get into your customer
files, they may try “customers”, “clients”, or “accounts”.

 Build a list of all pages that accept input. Keep it current! Your testing process should run the Security Analysis Report
on all of these pages after they are changed.

 Never show the error information from exception to the user. It’s a significant tool for hackers to learn more about your
site. Log errors and present the user with less informative error messages.

 Limit the use of the tag. Hackers often utilize it for cross site scripting. In addition, it helps them develop “Cross
site request forgery” attacks. This attack lets them embed a URL to another site into your site. When the tag is
loaded, the browser attempts to retrieve at file using that URL. The other site will record that your site and another user’s
browser was the source of this action. This allows the hacker to hide their identity. That URL rarely is to a file. Instead,
its to an actual page, with query string parameters. Even though your browser knows that it wants an image file, the
server that takes the request will treat it like someone typed in the URL and runs the page.

Here are some ways to limit use of the tag:

o Prevent them entirely. Peter’s Input Security’s CleanupInput() methods and those defined in the
<illegaltags> section of the Peter’s Input Security configuration files.

o Only allow images whose src= attribute references an image on your site. You will have to build a mechanism
to let users download images which you approve and then give a URL to the user to use.

o Establish a permission system so that each login can be restricted, permitted, or require approval.

o Block src= attributes that do not end in “.jpg”, “.jpeg”, “.png”, “.gif”, or “.bmp”. Typical cross site request
forgery attacks have URLs to actual web pages with query string parameters.

There are other HTML tags that employ a URL such as <a> and <bgsound>. Consider the same issues for all of them.

http://windowsupdate.microsoft.com/�
http://msdn2.microsoft.com/en-us/library/ms998280.aspx�

Peter’s Input Security a module of Peter’s Data Entry Suite 4

Copyright 2002-2010 Peter L. Blum. All Rights Reserved Page 277 of 277
http://www.PeterBlum.com

Troubleshooting
Here are some issues that you may run into. Remember that technical support is available from support@PeterBlum.com. We
encourage you to use this knowledge base first.

This guide contains problems specific to the Peter’s Input Security module. Please see the “Troubleshooting” section of the
General Features Guide for an extensive list of other topics including “Handling JavaScript Errors” and “Common Error
Messages”.

None specific to this module. Please use the Shared Features Guide.

mailto:support@PeterBlum.com�

	PeterBlum.com and Security
	What This Software Will and Will Not Do
	License Information
	Platform Support

	Technical Support and Other Assistance
	Peter’s Input Security Overview
	Your Opponents: the Hackers Of the World
	What to Defend: Inputs From The Browser
	What to Defend: Other Inputs
	Your Weapons: The Tools For Building A Good Defense

	SQL Injection Primer
	Ad-Hoc SQL Statements
	Stored Procs that use EXEC() on the inputs
	Blocking SQL Injection
	Neutralizing SQL Injection
	References

	Script Injection Primer
	Blocking Script Injection
	Neutralizing Script Injection

	Tampering Primer
	Tampering with Hidden Fields
	Tampering with Query String Parameters
	Tampering with Cookies
	Tampering with Visible Fields

	Other Forms Of Attacks
	Brute Force Login Attack
	Protecting the ViewState
	References

	Securing A Page
	Goals
	Follow these Steps on Each Page

	The Security Analysis Report
	Creating a Report
	Viewing a Report
	Understanding the Report

	The PageSecurityValidator
	PageSecurityValidator Properties
	HiddenFieldRule Objects
	ParameterRule Objects
	CookieRule Objects
	PageSecurityValidator Methods

	The FieldSecurityValidator
	FieldSecurityValidator Properties
	Methods of FieldSecurityValidator

	The TextLengthSecurityValidator
	TextLengthSecurityValidator Properties

	The LogAndRespond Engine
	Track exceptions on the page in the Page.Error event
	Track exceptions in your own Try.. Catch code
	Track errors of your own invention
	Track attacks from your own detection code
	LogAndRespond Properties
	LogAndRespond Methods

	About The SQL Detection Engine
	How It Detects SQL within Text
	What Each SQL Detection Level Uses To Detect Attacks
	Statement Detection Algorithm
	Text That is Never Permitted
	Initial SQL Keywords
	Names In Your Database
	SQL Functions
	Creating Your Own Rules
	FindSQLInjection and Other Methods

	About The HTML and Script Detection Engine
	HTML Tags That Are Never Permitted
	HTML Attributes That Are Never Permitted
	Javascript Code and Attribute Contents That Are Never Permitted
	Creating Your Own Rules
	FindScriptInjection Method

	Securing a Web Service And Other Inputs
	Methods for Cleaning Input On PeterBlum.DES.Security.Globals

	Slowing Down Attacks
	Features of the Slow Down Manager
	Setting Up The Slow Down Manager
	SlowDownMgr Properties
	SlowDownMgr Methods

	It’s Not Secure Until…
	Troubleshooting
	Word Bookmarks
	TableofContents
	TechSupport
	SecurityAnalysisReport
	PageSecurityValidator
	HiddenFieldRules
	QueryStringRules
	CookieRules
	HiddenFieldRuleObject
	OriginalValue
	ParameterRuleObject
	CookieRuleObject
	CleanupInput
	CleanupInputEncodeInvalidTags
	CleanupInputRemoveInvalidTags
	SQLNeutralized
	CleanupInputEncodeInvalidTags2
	CleanupInputRemoveInvalidTags2
	HTMLDecodePreserveTags
	DescribeValidator
	ScriptNeutralized
	AddCommentToElement
	AddCommentToPage
	PrintReport
	SetOriginalValue
	ThisControlIsSafe
	FieldSecurityValidator
	SQLCommunicationMode
	LogDataInfo
	TextLengthSecurityValidator
	TLSV_Properties
	TLSV_CleanupInput
	LogAndRespond
	TrackException
	TrackError
	TrackErrorArgs
	TrackAttack
	AttackDetails
	TrackAttackArgs
	DefaultTrackAttackArgs
	DefaultTrackErrorArgs
	EventLogIsBackup
	ChangeAttackTypeDescription
	ChangeAttackInputTypeDescription
	GetTrackAttackArgs
	GetTrackErrorArgs
	SQLDetectionLevel
	DefineWeightedKeyword
	DeleteWeightedKeyword
	IllegalSQLElements
	DangerousSQLKeywords
	DatabaseTypes
	InitialSQLKeywords
	sqltableandfieldnames
	CustomSQLExpression
	SQLFunctions
	CustomSQLExpressionMethod
	FindSQLInjection
	AttackResults
	IllegalTags
	illegalattributes
	illegalattributecontents
	CustomScriptExpression
	CustomScriptExpressionMethod
	FindScriptInjection
	CleanupInputKeepingTags
	CleanupInputKeepingTags2
	Globals_HTMLDecodePreserveTags
	SlowDownMgr

